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ABSTRACT

The design of a class of special purpose computing machines

which compute by counting is systematically developed. The basis

of the design philosophy is to limit the basic building elements to

three fundamental units and to develop the method of synthesis such

that these three building elements are represented as operational

units. In particular, the three basic building elements are (1) the

binary rate multiplier which is a means of scaling down a pulse

stream to some specified fraction, (2) the counter, and (3) the

anti-coincidence circuit which is a means of separating pulses

arriving at the counter simultaneously. The computational errors;

i.e., rounding-off error and truncation error, introduced into the

machines when these elements are treated as operational units are

studied in detail. The method of synthesis is explicitly stated

and a wide variety of machines obtained directly from this synthe-

sis are presented. Finally, a series of machines is presented for

interpolation and extrapolation of a function which is available

only as empirical data.
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CHAPTERI

PRINCIPLEDESIGNELEMENTS

Introduction

Computers are usually divided into two broad catagorles, analog

and digital. Analog computers represent variables as physical quan-

tities. The solution of a problem in an analog computer is attained

by constraining a physical model of the problem to be solved, and

measuring the variables. The ability to program a wide variety of

problems is achieved by having functional componentsavailable(e.g.,

adders, multipliers, integrators) and interconnecting them by means

of a patchboard. The resulting interconnection is scaled to match

the desired equation. On the other hand, digital computers represent

variables as discrete quantities. The usual method of solution of a

problem in a digital computer is attained by sequencing a sequence of

instructions through the fetch-execute cycle of its control unit.

Another class of digital computers, knownas incremental computers,

combine the parallel functional simplicity and speed of analog com-

puters with the ability of attaining computational precision which is

not dependent on precision of measurements. Such computers attain a

speed advantage over conventional general purpose computers by trans-

mittingand processing only partial words in a numberof parallel

arithmetic organs rather than the whole words needed by the fetch-

execute cycle. Moreover the digital nature of these computers permit



the problem solution to be repeated exactly and therefore does not

possess the drift characteristic of analog computers. Beyonda doubt

the incremental computer which has found the most interest in the

literature is the digital differential analyzer; i.e., DDA. Thls

computer can be viewed as a digital analogy of an analog computer.

The usual design practice in each of these machines is to permit them

to solve a large spectrum of problems. Whena computer need arises

for a special purpose application, this versatility is felt as a cost

factor.

A class of incremental techniques which has been used in real

time control is a class known in the industry as countup-countdown

techniques. The basis of these techniques is to represent data by a

unitary code. For example, the number28 is represented by 28 pulses.

A function maybe represented by counting the sequence of pulses in a

forward-backward counter or converting them directly into an analog

quantity (e.g., by a stepping motor) for analog processing. Conse-

quently, whena real tlme application deals with contlnuous-smoothly

varying functions, countup-countdo_n techniques offer a simplicity

and economyof hardware which is hard to beat with computing systems

designed to handle a large spectrum of problems.

The purpose of this thesis is to investigate countup-countdown

techniques with the objective of demonstrating that they can, in

fact, be used to generate a wide variety of non-trival functions.

This will be done by displaying a circuit which will generate each

function. However, since the techniques upon which we base this

thesis are described in the literature only in an ad-hoc manner



(Refs. 4, 5, 9, lO, 12, and 19), we will be specific as to which cir-

cuits we will permit as basic building elements. In particular, the

fundamental units which we will permit are (1) the binary rate multi-

plier (abbreviated BRM)which is a meansof scaling downa pulse

stream to somespecified fraction, (2) the counter, and (5) the anti-

coincidence circuit which is a meansof separating pulses arriving

at the counter simultaneously. In order to strengthen our argument

we will avoid completely the explicit use of adders and subtractors.

A succinct recapitulation of the purpose of this study is to system-

atically develop and demonstrate the versatility of techniques based

on counting for solving sophisticated and practical special purpose

computer design problems.

Our method of synthesis will be to describe the principle

building elements as operational units and then proceed by opera-

tional techniques to showhow to fabricate the various machines. In

particular, a first order difference equation can be represented by

a counter, and approximate integration can be attained by using a

counter in cascade with a binary rate multiplier. These principle

design elements are described in this chapter.

It is to be expected that the results obtained by operational

meanswill deviate from the actual results due to the finiteness of

the machine and the approximation implied by our synthesis. A dis-

cussion of these approximations is presented in CHAPTERII. This

chapter is supplemented by Appendices A and B where somequantitative

results are presented related to the computational accuracy of the

BRM. In CHAPTERIII we explicitly state the method of synthesis and



demonstrate it by deriving a wide variety of representative machines.

Some of these machines have been simulated on a general purpose com-

puter and these results are also presented and discussed in CHAP-

TER III. In CHAPTER IV the specific problems of constructing poly-

nomial generating machines are considered. In particular, a family

of machines are given for interpolating and extrapolating values of a

function defined only by empirical data.

Binary Rate Multiplier

A binary rate multiplier (abbreviated BRM) is a means of scaling

down a pulse stream to some specified fraction. A logic diagram of

a BRM which is built out of standard logic elements is shown in

Fig. 1.1a. This circuit is described in detail in several of the

references (e.g., Refs. 4 and lO). Consequently, a brief description

will serve our purposes. The input pulse stream is applied directly

to the binary counter whose value is denoted by XnXn_ 1 . . . X2Xl.

Each flip-flop of the counter is operated as a trigger. For every

two input pulses to a trigger two output pulses are produced; one

pulse when the flip-flopmakes a 0 to 1 transition called an _ pulse

and one when the flip-flopmakes a 1 to 0 transition called a

pulse° The _ pulse is used to trigger the successive stage of the

counter. The _ pulses are gated through gated pulse generators and

mixed through a NOR element to produce the desired fraction of the

input pulses. This simple mixingtechnique may be used because the

pulses from the various stages are separated in time from each

other. This timing factor is shown in Fig. 1.lb.

The quantitative relationship of a BRMmay be expressed as
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follows: If _x is the number of input pulses, the number of out-

put pulses produced by the kth stage of the counter is _x • 2-k

This multiplicative relation will remain valid over any interval for

which _x is a multiple of 2k pulses. If Y-k is the level set-

ting of the kth stage gated pulse generator, the number of output

pulses which may be gated through this stage will be Y-k _x • 2-k.

Since the output pulses from the various stages are simply mixed,

the number of output pulses _z of an n stage BRM over any inter-

val _x which is a multiple of 2n pulses will be the sum of all

the pulses gated through all the stages. This output is

n

-i (l.l)_z = _x y.i 2

i=l

The quantity y = _ y_i 2-i

i=l

Eq. (i.i) may be written as

where the range of y is

is a binary number. Therefore

= y (1.2)

0 _ y _ 1 - 2_n in steps of 2-n (1.5)

If y remains constant over a &x interval of 2n pulses,

then the output shown by Eq. (1.2) remains exact. However if Lkx is

less than 2n pulses then this multiplicative relationship remains

valid only on the average. This can be demonstrated as follows: If

_x is the number of input pulses into a n-stage BRM starting with

counter value x, and whose gated pulse generators are set to value

y, then the output for this machine is _zx. Since there are 2n

possible starting values, then there are 2n possible different



machines.

2n different machines is

2n-i
2n :/C

The average output; denote it by _, over all of these

x=0

The total pulse output over all of these machines is

(1.4)

pulses. This is equivalent to putting 2n _x successive input

pulses into a single machine since each transition over all of these

machines is attained Ax times. For example, the transition ending

with counter value x is attained by the Zkx machines starting out

with the counter value prior to x. Therefore, the total number of

output pulses over all of these machines is also given by Eq. (1.2).

2n-1

x=_ Azx = y • 2n Ax (1.5)

Combining Eqs. (1.4) and (1.5) we have

: y (1.6)

Because of the approximate nature of Eq. (1.2) when _x is

less than 2n pulses, we will calculate the specific output sequence

in demonstrating specific machines. For these calculations, the

pulse stream shown in Fig. l.lb may be displayed in vector form.

This will be called the p-sequence. Each position of the vector in

this sequence represents the possible output at a particular pulse

time from a stage of the BRM. The p-sequence for a two, three, and

four stage BRM is displayed in Table i.i.



TABLE1.1 - EXAMPLESOFp-SEQUENCES

Pulse

1
2
S

5
6
7
8
9

lO
ll
12
1S

15
16

2 Stage
p-sequence

i0
01
l0
00

5 Stage
p-sequence

100
010
100
O01
100
OlO
100
000

Stage
p-sequence

lO00
OlO0
lO00
OOlO
lO00
0100
lO00
O001
lO00
OlO0
lO00
0010
i000
0100
i000
0000

The p-sequences given above assumesthat the BRMcounter start-

ing value is zero. If another starting value is used then its

associated p-sequence can be easily obtained. Moreover, if an in-

terval greater than 2n pulses is used, then the p-sequence can be

obtained by repeating the p-sequence given above.

The sequence of output pulses maybe calculated by multiplying

bit-by-bit the p-sequence with the respective values of the level

settings of the gated pulse generators. This process is illustrated

below by two examples.



Example A:

o% /o o o oh'o
io\ llolnoni:_
oo I \ZZl0Zlll/ o

oo I
lo;
oo/
oo!

Example B:

ozo\lOlOOOZOl=
loo1 \ooolooo/

°°ll i
ioo I
olo/

oo!
The first matrix, in each of these examples, is the p-sequence. The

next matrix represents successive values of the gate settings. When

these two matrices are multiplied, the result is developed along the

diagonal of the resultant matrix. This result is shown as a vector

on the right hand side.

The expected output value of Example A by Eq. (1.6) is 55/8

pulses for the 8 input pulses. However, as shown by actual computa-

tion, the BRM yields zero output pulses. On the other hand, the

expected value of Example B by Eq. (1.6) is 21/8 pulses for the

7 input pulses. The above computation yields 7 output pulses. Both

of these examples are pathological cases in the use of the BRM. The

approximate nature of Eq. (1.6) can ordinarily be expected to yield

more realistic results. Some of these results are presented in

CHAPTER III.

The method of synthesis to be presented necessitates that the

BRM operate on signed quantities. In particular, the level setting of
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the gated pulse generators and the counter input pulses must be

signed quantities, and the BRM is to yield a signed pulse output.

If the output pulses are accumulated in a counter then the sign of

the pulse will determine the direction of counting. If the output

pulses are used to drive a stepping motor, then the sign of the pulse

will determine the direction the stepping motor is to turn. Through-

out this discussion we will consider that the signs_of_various quan-

tities are available through level logic. Consequently, the output

sign can be obtained from the input signs by an exclusive OR circuit.

Counter

The purpose of the counter in the machines which will be con-

sidered are twofold; (1) to accumulate the pulses arriving at the

counter in order to display the total number of counts, and (2) to

set the levels of the BRM's. In the first application the counting

sequence can be any desired sequence for a terminal device. In many

real time applications the output pulses may not be accumulated di-

rectly but are converted to an analog quantity for analog process-

ing (e.g._ by a stepping motor). In the second application, the

counting sequence must be compatible with the BRM. This general re-

quirement can be met by the circuit displayed in Fig. 1.2.

A number is represented in this counter by magnitude plus sign.

As had been stated earlier the signs are represented by level logic.

The counter counts down in magnitude when the input pulse and counter

are opposite in sign and counts up in magnitude when the counter and

input pulse have the same sign. The circuit is designed so that the

pulses are used to count down and the _ pulses used to count up.
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There are two representations of zero; that is, minus zero and

positive zero. Whenthe counter value is at +00 . 0 and a -i

pulse arrives then the counter is set to -00 . . O1. This end cor-

rection is accomplished in three steps.

changes the counter value to +ll . .

corrected in the second step to +0 .

l,

The normal sequence first

The magnitude is then

O1. Finally, the sign is

changed to -00 O1. The sign is changed last so that the

pulses generated when the magnitude is correcte_ do not propagate to

the successive stages of the counter.

just given, the counter is set to +00.

is -00 . . 0 and a +l pulse arrives.

In a similar manner to that

• O1 _henthe counter values

The down counting sequence

for a three stage counter is given in Table 1.2.

TABLE 1.2 - DOWN COUNTING SEQUENCE

-1 Input pulse +l Input pulse

+ill

+llO

+lO1

+lO0

+Oll

+010

+OO1

+000

+lll- +OO1 _ -001

-ill

-llO

-lO1

-lO0

-Oll

-010

-OO1

-000

-lll _ -OO1 - +001

The up counting sequence utilizing the _ pulses of the flip-

flops is given in Table 1.5.
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TABLE1.3 - UP COUNTINGSEQUENCE

-1 Input pulse +l Input pulse

-000

-001

-OlO

-Oll

-lO0

-lOl

-llO

-lll

+000

+O01

+010

+011

+100

+lO1

+ll0

+lll

Since the signs of both the pulse output of the BRM and counter

value are to be processed by level logic_ then the activation of the

up-down line is accomplished by an exclusive OR circuit. This is

obvious from Table 1.4.

TABLE 1.4 - COUNTER SIGN CONTROL

Sign Sign

input counter

pulse

+

+

+

+

Line

activated

Up

Down

Down

Up

Anti-Coincidence Circuit

Pulses arriving at a counter simultaneously must first be

separated before they are entered into the counter. The circuit

that accomplishes this task is called an anti-coincidence circuit.

Fundamentally, this circuit necessitates storing each pulse as it

arrives. Each stored pulse is then presented to the counter accord-

ing to a fixed program. The circuit configuration which can accom-

plish this task for two inputs is shown in Fig. 1.5.

The operation of the circuit given in Fig. 1.5 is as follows:
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If a pulse from input 1 exists, it is stored in flip-flop 1. If a

pulse from input 2 exists, it is stored in flip-flop 2. It will be

noted that these two inputs can arrive simultaneously. Two pulses

are emitted by the clock which are separated from each other. If

flip-flop 1 had been set by input l, it is reset by the clock

pulse C1, which in turn generates an output pulse. If flip-flop 1

had not been set, no output pulse will appear in the output. Flip-

flop 2 is reset and an output is similarly generated by clock

pulse C 2. Since clock pulses C1 and C2 are separated, the

corresponding output pulses are also separated.

Since the sign of a pulse is processed by level logic, the sign

need not be stored before they are l_resented to the anti-coincidence

circuit. However, when a pulse is presented to the counter, its

sign must also be presented. This may be simply accomplished by

shifting the sign level to a flip-flop by the separated clock pulses

C1 and C 2. This circuit is also shown in Fig. 1.3 where S's and

_'s are the sign levels of the pulses and their complements, respec-

tively.

If more than two inputs arrive at the counter simultaneously,

then a need arises for a circuit other than a simple clock to sepa-

rate the stored pulses A simple binary counting sequence such as

the leftmost sequence shown in Table l.Swill serve this purpose.

However, it will be noted that while this sequence can generate more

than two steps, the _ and 6 pulses from the various flip-flops are

not separated, so consequently can not both be used.

All the sides of the flip-flops could be used if the counting
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sequence utilizes a unit distance code. Such a code would guarantee

that not more than one flip-flop would change state at any step of

the counting sequence. Consider the Gray code counting sequence

given by the middle sequence in Tablel 1.5. This counting sequence can

be used to separate as many as six inputs arriving at the counter

simultaneously. However, this requires the counter itself to go

through eight steps. An example of a counting sequence which may be

used to handle six inputs and yet go through only six steps in the

counting sequence is given by the zightmost sequence in Tableil.5.

TABLE 1.5 - PULSES GENERATED BY SEVERAL COUNTING SEQUENCES

Coun ting

sequence

000

001

OlO

Oll

lO0

lO1

llO

iii

Pulses Counting

generated sequence

--o_ 000

-c_ OO1
--c_ Oll

_ OlO
--cc ii0

-o_ iii
--c_ i01

_3J3_3 i00

Pulses

generated

--CL

-CC-

(D_--

- -(3C

Counting

sequence

000

OO1

Oll

lll

llO

lO0

Pulses

generated

--CL

(_C----

Schematic Representation

The three circuits described l_n this chapter are the principle

design elements. However, in describing the machines promised by

this thesis, these three circuits will be represented as operational

units. The advantages to be gained by using operational units rather

than these circuits are twofold. First, the method of synthesis can

be more clearly presented. Secondly, a considerable hardware reduc-

tion can usually be realized when the composite machine is con-
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sidered. These simplifications arise when all of the features of

these basic circuits are not required. A checklist of the features

which when removed would simplify the basic circuits would include:

(1) sign control of BRMmay not be required, (2) counter may not

be required to both countup and countdown, (3) two BRM's may receive

the same input pulse stream with the result that one BRM counter may

be used with two sets of gated pulse generators, and (4) the level

setting of the BRMmay be constant with the result that a scaling

circuit (see Ref. lO) rather than a BRMmay be used. These three

circuits are, however, sufficient as principle design elements.

The three principle design elements as operational units are

presented in Fig. 1._. The BRM is represented by the schematic dia-

gram sho_-n in Fig. 1.4a. The value y in this diagram is less than

one and is obtained from level logic. The quantities _x and _z

are the input and output pulse streams,_ respectively. The input-

output relation for this diagram is expressed by Eq. (1.2). Alter-

nately, the BRM is represented by the schematic diagram shown in

Fig. 1._b when the value of y remains constant. In these cases

the BRM may be replaced by a scaling circuit in the final design.

Fig. 1._c presents the schematic diagram of the counter. The quan-

tity _z is an input pulse stream and z is the output which may be

used in level logic. When the counter is used to set the levels of

the gated pulse generators of a BRM a scale reduction of 2 -n is

implied by the connection. At times this scale reduction will be

shown explicitly by the same diagram shown in Fig. 1._b. The initial

conditions of a counter may be shown explicitly by inserting it in
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the box; i.e., Z(o). Considering the counter value as a function of

iterative steps then the input-output relation maybe expressed by

the first order difference equation

Z(k) -- Z(k-l) + _(k-1) (1.7)

The value of Z(k ) in Eq. (1.7) in terms of the initial condition

of the counter is

k-i

z(k): Z(o) (i.8)

Fig. 1.4<1 represents the schematic diagram of an anti-coincldence

circuit. This circuit accepts multiple pulse inputs and produces

a single pulse output. The design of this circuit is such as to

permit the input pulses to arrive simultaneously. However, at times

it will be convenient to use this schematic diagram for multiple

pulse inputs even if the pulses are known to be separated. This

usage_ therefore, should permit a corresponding simplification in

the final design.
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CHAPTER II

ANALYSIS OF MACHINE COMPUTATIONAL ERRORS

Classification of Errors

The difference between the actual output of a system and that

given by a theoretical model is considered the error of the system.

If f represents the theoretical process given by the model, x

represents the values of the arguments, fa represents the actual

process, and Xa represents the values of the arguments vitiated

by previous calculations, then the total error 8 is given by

= f(x) - fa(Xa) (2.1)

It is convenient to subdivide the error into the error propa-

gated from previous calculations and error generated locally. The

sum of these two errors is also equal to the total error as is evi-

denced by rewriting Eq. (2.1) as:

= f(x) - f(Xa) + f(Xa) - fa(Xa) (2.2)

The quantity f(x) - f(xa) is error propagated from previous calcu-

lations and is called the propagated error. The difference between

the value calculated locally by the model and the value generated by

the actual process; i.e., f(xa) - fa(Xa), is called the generated

error.

von Neuman and Goldstine (Ref. l) classified the generated

errors into four categories according to their source. These four
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sources are simplylisted as follows:

(1) Model errors

(2) Input errors

(3) Truncation errors

(4) Rounding-off errors

The last two errors are of primary concern to the numerical

analyst and are called computational errors. Truncation errors re-

sult from expressing transcendental operations as numerical pro-

cesses. For example, if a transcendental function is evaluated by

an infinite series or as the fixed point of a process, then the

truncation error is the error introduced by terminating the evalua-

tion short of the limit goals. In the case of an iterative process,

this error is called the iterative truncation error. Rounding-off

error is introduced into the resultant after each arithmetic opera-

tion. In conventional digital computers, this error is introduced by

rounding or chopping a number such that it can be represented by a

register of fixed length. It can be viewed as an error in the

arithmetic processes.

If fc represents the numerical approximation of the theoreti-

cal process f, then the difference f(x a) - fc(Xa) is the generated

truncation error and fc(Xa) - fa(Xa) is the generated rounding

error. The generated error is equal to the sum of these two errors

as is evidenced by

f(xa) - _a(Xa) = f(xa) - fc(Xa) + fc(Xa) - _a(Xa) (2.3)
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Computational Errors of BRM

Fig. 2.1 represents a counter in cascade with a BRM. If Y(k)

in this figure represents successive values of y, each of which re-

main constant over some interval of 2n pulses, then the value of

the counter can be expressed by the following difference equation.

Z(k) = Z(k-l) + Y(k-1) Ax (2.4)

If z(o ) represents the initial value of the z counter, then

Eq. (2.4) may be expressed as

k-1

z(k): z(o)+ Z y(i) (2.2)
i=0

This equation is recognized as Euler's (rectangular) integration.

A model of this process which is convenient for machine synthe-

sis is presented in Fig. 2.2. The deviation of the results givenby

the model from that given by Eq. (2.4) is the truncation error.

The counter z in Fig. 2.1may be viewed as a lower register

zZ consisting of n stages and an upper register zu of an arbi-

trary number of stages. Thus, after the first iteration of

Eq. (2._), zZ contains the fraction Y(O) 2n of input pulses.

Rounding of the upper register may be accomplished by presetting

zZ to one-half of the maximum counts possible in zz, and chopping

may be accomplished by presetting zZ to zero. After the second

iteration, Y(1) 2n pulses are added to the counter z. As a result

of this iteration, zZ may or may not overflow into zu. Proceeding

in this manner, it is noted that zu represents the single precision

rounded or chopped sum shown in Eq. (2._).

The above description has been presented only in order to put
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Y(k)

Figure 2.1. - Euler's integration.

Z(k)

(Ix

Y
y dx I

Z(o)

Figure 2.2. -Integration model.
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the rounding error in the framework of conventional computers. A

more realistic operational procedure may be realized is &x is a

subinterval of less than 2n pulses. The advantages to be gained in

this situation are twofold; (1) the speed of the computation may be

increased, and (2) a hardware savings may be realized by reducing or

eliminating the lower register. The output in this case is vitiated

also by an error in multiplication. In particular, if _x is a

subinterval of one pulse then the output is in error only by the

error in multiplication. Because of the importance of Eq. (2.4) in

this study, the multiplication error of this equation is presented

in Appendices A and B and in the following sections.

Multiplication Error Formulas

Starting the BRM counter with zero the actual output of the BRM

is given by

z = Entier (y _x + 1/2) (2.6)

This function together with a plot of Eq. (1.2) is given in

Fig. (2.3) for a three stage BRM for the various values of y. The

difference E between these two quantitie_s; i.e.,

E = Entier (y _x + 1/2) - y &x (2.7)

is plotted for this three stage BRM in Fig. (2.4). The difference

E, when only one stage of an n stage BRM is gated by y, can also

be expressed systematically in tabular form as shown in Table 2.1.
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TABLE 2.1 - MULTIPLICATION ERROR E

WHEN ONE STAGE IS GATED

OF BRM

Y_I = 1 Y_2 = 1 Y_3 = 1 Y_k=l

_Xk_ 1 • . xsx2xl E

OO .000 0

xI E x2x I E

0 0 00 0

1112o i -l/_=
10 2/4

11 1/4

xsx2x I E

000 0

001 -1/800

010 -2/800

011 -3/8

100 4/8

101 5/8

ii0 2/801

1 ,i 1 1/810

i0

• . OO1

.OlO

lll

• . 000

001

ll .lll

__(2k-1 _ 1)/2k
1/2

(2k-i 1)/2k

1/2k

An inspection of these tables shows that the error associated

with the various stages of a BRM may be expressed more concisely in

algebraic form as shown in Table 2.2.

TABLE 2.2 - MULTIPLICATION ERROR E

IN ALGEBRAIC FORM

Stage E

1

2

3

k

yY_l(Xl/2)
_2(x2L2-xl/4)
y_3(xJ2 - x214- XllS)

ylk(xkl2- X__ll4- . - Xl/2k)

For an arbitrary value of y, the value of E is the linear

combination of the values shown in Table 2.2. This bilinear form

is shown in Eq. (2.8) for an n stage BRM. The element subscripts

of the Boolean vectors x and y (i.e., vectors whose elements are
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0 or l) which are shownin this equation correspond to the stage

numbersof the BRMshownin Fig. 1.1.

E = (Xl,X2, ., Xn)M

M

_ _! _! _! 1 _!8 16 2n-1 2 n
@ J a

0 1 1 1 1 1

I _. -_ -_ ''. 2n_2 2n-1

1 1

2 4=

1
• w

2

i i _i ;

1 l

1
0 • 0

(2.8)

(2.9)

In the formulation of E_ the maximum values of the output

of the BRM were reflected at the points of discontinuities. It

will be observed that just prior to these points the error is one

quanta less than that shown by E. A formulation of F in which

the minimum values are reflected at the points of discontinuities

can be obtained in a manner similar to that for obtaining E. The

quantity F_ when only one stage of an n stage BRM is gated by
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y, is shownin tabular form in Table 2.3 (only a few cases are

exhibited).

TABLE2.3 - MULTIPLICATIONERRORF WHEN

ONLYONESTAGEIS GATED

Y-1 = 1

Ci xI N

0 0 0
1 1 -1/2

Y-2 = 1

C2C1 x2xI N

O0 00 0
1 1 0 1 _-i/4
i 0 i0 -2/4
0 1 1 1 1/4

Y-3 = 1

C3C2C1 x3x2x1

000 000
l ll 001
llO 010
101 011
100 100
011 101
010 ll0
001 lll

N

0

- 4/8
3/s
2/s
1/8

It will be observed that the F values equal the E values

except at the points where the discontinuity occurs. At these

points F equals -1/2 while the corresponding E value equals

+1/2. The C values shown above correspond to the 2's comple-

ment of the x values. It will be observed that the F values are

identical in terms of C to the negative values of E.' Conse-

in terms of C is just thequently, it can be asserted that F

negative of E.

F = -(CI,C2,

Y-2

•, Cn)M •

%Y-nj

(2.1o)
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An example will help clarify these formulas.

the value of y is 101, and the values of E and

lated for successive BRM counter values.

In this example

F are calcu-

ioo [ ol /_
OiC \o o zlW l I-z14

__/nc I l/8
/OOl 1l/2
/lOl _7/8
\on \1/4
\lli \5/s

in / It o 112-l/_l o :on o li21 _. ll_\
lOl 7/81

F : - /ooi/ 1/21
\llO/ llSI
tOlO/ 1/_l
\zoo/ 31d

This example is shown in graphical form in Fig. 2.5.

Consider the difference E - F. For a three stage BRM this is:

E - F = (Xl,X2,x3)M _ + (c1,c2,c5)_ y_ (2.1l)

V-J V-J

The premultiplier to the vector y; i.e.

(Xl_X2,x3)M + (CI,C2_Cs)M = (x I + Cl3X 2 + C2,x 5 + Cs)M

is equal to the values given in the p-sequence.

/ooo\/z/2z/_-1/sk /ooo\
211\ l!2 = i00t o . /o o\
211 i i00
002, /001 J

?li / \zoo/
O_.l/ \OlO/

\ 211/ \lO0/



31

0

ev,
¢=3

2

3/8

/

/
/

_/-7/8

/

112

/
i-1/2

718

/
/

/
-118

#

I_/4/
/

5/8

/
/

1 2 3 4 5 6 7
BRM counter value

Figure 2. 5. - Multiplication error resulting from y =. 101.

/



52

When a BRM counter starts out with an arbitrary value, then

the starting value must enter into the error formula as a param-

eter. These error formulas are given explicitly by Eqs. (2.]2)

and (2.13). In particular, Eqs. (2.12) and (2.15) reflect the maxi-

mum and minimum values of the actual output at the points of dis-

continuities, respectively. In these formulations x and x S rep-

resents the value and the initial value of the counter, and C

and C S represents the 2's complements of these values. The sub-

scripts on those literals represent, as before, the stage of the

BRM. In Eq. (2.1S), xSR identifies the right most counter bit

whose value is i; e.g., for the counter value i00 then XsRY-R = Y-S'

for counter value Oll then xSRY-R = Y-l, etc.

Y-I

Y-2xsnI 1
'Y-1

,Y:n/

G = (xI - XSl,X 2 - XS2 ,

•, Cn - Csn)MH = -XsRY_R - (CI - CsI,C 2 - CS2 ,

Multiplication Error Bounds

n

an analysis of Eqs. (2.8) and (2.10), respectively. These values

will then form a bound of the deviation of the BRM from that of

exact multiplication. This analysis is presented in Appendix A.

(2.13)

The maximum positive error and the minimum negative error for a

stage BRMwhose counter starts out with zero may be obtained by

It
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is shown in that analysis that for an n

are:

stage BRM these values

7 n (-1)n
Emax(n) = _-_+ _ + (2.14)9 • _n

7 n (-1)n

Fmin(n) = 18 6 9 • 2n (2.15)

Eq. (2.14) is plotted together with Eq. (2.15) in Fig. 21.6. As

a by-product of developing Eqs. (2.14) and (2.15), it was necessary

to find the points where these values occurred. These points are

tabulated for various BRM in Tables 2.4 and 2.5.

Appendix B presents an analysis of a BRM whose counter starts

out with an arbitrary value. The basis of this analysis is to use

Eq. (2.12) to obtain the maximum positive error and to use

Eq. (2.15) to obtain the minimum negative error. For a n stage

BRM these values are:

Gmax(n ) : 1 + n (-1)n (2.16)
9 3 9 • 2n-1

7 n (-1)n (2.17)
Hmin(n) = 9 5 9 • 2n-1

These values form a bound for the generated round-off error.

Fortunately, these values are taken on at only two points of the

BRM (for n > 2)_ and therefore one can expect better results than

would be predicted by these values. These values are plotted in

Fig. 2.7 and are also presented together with the points at which

they occur in Tables 2.6 and 2.7.

The problem which has been considered in Appendices A and B
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TABLE 2.A - x AND y VALUES FOR Ema x

n x7...x I Y-I'" "Y-7 x7"" "Xl Y-I'" "Y-7

2 ll ii ii ii

5 i01 i01 iii lll

i011 ii01 ii01 i011

5 i0101 10101 ii011 ii011

6 i01011 ll0101 ii0101 i01011

7 i010101 1010101 ii01011 ii01011

Emax

3/4
7/8

17/16

39/32

89/64:

199/128

n

TABLE 2.5 - x AND y VALUES FOR Fmi n

x 7 ... xI

01

011

0101

01011

010101

0101011

Y-I" ""Y-7

ii

i01

llO1

i0101

ii0101

1010101

x 7 •..xI

01

001

0011

00101

001011

0010101

Y-I" •"Y-7

ii

iii

1011

ii011

i01011

ii01011

Fmi n

-3/4
-7/8

-17/k6

-59/52

-89/64

-199/128

TABLE 2.6 - x, Xs, AND y VALUES FOR Gma x

xs7"''XSl x7"''xliY-l'''Y-7 xs7"''XSl x7"''Xl Y-I'-'Y-7 Gmaxn

2

5
4

5

6

7

Ol

OO1

0101

00101

Ol0101

O010101

l0

ii0

i010

ii010_

10101Q

ii01010

Ol O0

011 010

0101 0010

01011 01010

010101 001010

0101011 0101010

Ii

i01

ii01

lOl01

ii0101

10101011

ii

i01

i011

i0101

i01011

lOl0101

514
9/8

25/16

57/52

155/64

515/128

TABLE 2.7 - x, Xs, AND y VALUES FOR Hmi n

n xST...Xs1

2 ii

5 i0!

4 llO1

5 i0101

6 llOlO1

7 i010101

x 7 •..x I

Ol

011

OOll

OlOlll

001011

0101011

Y-l" ""Y-7

ll

101

lOll

i0101

lOl011

lO10101

Xs7. •.xSl

ii

iii

i011

ii011

101011

ll01011

x 7 •..x I

Ol

001

0101

00101

010101

0010101

Y-I" • "Y-7

ii

iii

ll01

ll011

ii0101

ii01011

Hmin

-5/2
-7/4

-17/8

-59/16

-89/52

-199/64
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and in this section is illustrated in Figs. 2.8a and 2.8b. The

actual and desired outputs for a 2 and 3 stage BRM are plotted in

these figures for all starting values. As is illustrated, finding

the multiplication error bounds by graphical means is not trivial.

The points labeled Emax, Fmin, Gmax, and Hmi n in these simple

cases agree with those predicted in Appendices A and B.

Error Bounds

The usual formulation of the error problem is to calculate

bounds of the total error based on bounds of the generated errors.

In the case of Euler's integration these results are available in

the literature (e.g., Refs. 15 and 16)o Since the analysis by which

the bounds are obtained is based on worst case conditions, the re-

sults are usually too pessimistic for design purpose. In particu-

lar, P. Henrici (Ref. 15) has presented the complete analysis of

the initial value problem

y' -- f(x,y), 2(_)_-- _ (2.18)

approximated by Euler's integration. The bounds that he presents

are in terms of Lipschitz function; i.e.,

EL(X) = eLx " 1 L > 0
L

x L --0 (2.19)

where L is a constant such that for any x in the interval

a < x <_ b and any-two values y and y

If(x,y)- f(x,y*)l<-T'IY-Y*I (2.2O)

The bounds for the truncation error t(k ) and the accumulated

rounding-off error r(k ) are given by



38

y= 314

Gmax

4F'mi n
i

J

y=2/4 L-_

0 2 0 1 3 1

XD

2 0 2 3 1 3
BRMcounter

(a) Two-stage.

Figure 2.8. - Output of BRtvlfor all startingvalues.



, 39

y - 7/8

y = 618

Y

Z _ _r_

//

,/1

Y
F

C]
/

y - 518

y = 418

y = 318

y= 2/8

i

./

L
Gmax

zf"

d _- _ _

7 Gmix (i>'__
f

J i

Y

/

i

J

i

f

/

...i_f

J--i"

y = 118
L 3 i _ i
0 2 4 6 0 1 3 5 l 1 2 4 6 0 2

x, BRM counter

(b) Three-stage.

Figure 2. 8. - Continued. Output of BRMfor all starting values.

3 5 7 1 3

i IIIII



40

y = 7/8

y = 6/8

1

,3"

Y

/,
LJ

S
X

/

/

,/' /
x" _:J

,E ,E

y- 5/8

y = 418

y = 3/8

y= 2/8

,E

/_ / ,z"

Hmin J
I

/S

y = 118 I __L-_----1--_ II_----_,,,, ,' I _J_,-----I _I I I I I ,111 I II-'J--__
4 6 0 2 4 5 7 1 3 5 6 0 2 4 6 7 1 3 5 7

x, BPJVlcounter

(b) Concluded. Three-stage.

Figure 2. 8. - Concluded. Output of BPJMtfor all starting values.

f .J_ /



t(k ) < _x N(X(k))EL(X(k ) - a) (2.21)

e

r(k ) _EL(X(k ) - a) (2.22)

where N(x) = 1/2 maxly"(t)l for all t in the interval a __ t __ x

and e is the maximum local rounding error.

The total error g(k) is bounded by the sum of these two

bounds; i.e.,

8(k) <--_x N( Xk )EL( X( k ) - a) + _ EL(X(k ) - a) (2.23)

Consider now the generation of this thmction by use of a BRM.

The function f(x,y) is used to set the level of the BRM, and the

output of the BRM is summed in a counter which represents the value

of y (see Eq. (2.18)). If the value of f(x,y) is updated every

_x PUlses, then the bound given by Eq. (2.23) may be applied

directly to this process. Suppose the interval size is chosen such

that the error bound given by Eq. (2.23) is a minimum. If f(x,y)

is updated every pulse instead of every _x pulses, we couldexpect

that the actual error would be smaller than this minimum. In any

event we will take this minimum as the error bound for the function

generated by the BRM. The minimum of the right-hand side of

Eq. (2.23) is

8(k) _ _/_ _N(X(k)) EL(X(k) - a) (2.24)

The value of e in Eq. (2.24) may be obtained from Eq. (2.17).

This equation may be used to form a bound of the multiplication

error. Moreover for large values of n, this may be approximated by

7/9 + n/5. If the maximum value of y; i.e., Ymax, is represented

in the counter by 2n counts, then
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e < 7/9 + n/3 Y_x (2.2S)
-- 2n

Combining Eqs. (2.24) and (2.25) the error bound is

_(k) <_f7/9 _nn/3 Ymax N(X(k))EL(X(k) - a) (2.26)

This equation has the property that the error bound decrease

as the number of stages of the BRM is increased. However, it is too

pessimistic for design purposes. This point will be illustrated

in the next chapter by applying this formula to a specific countup-

countdown machine.



45

CHAPTERIII

GENERATIONOFFUNCTIONS

Synthesis (Differential Equation)

The method of synthesis which will be applied in this section

is to express the function to be generated as the solution to a

differential equation. It has been demonstrated with analog tech-

niques that a wide variety of functions can be generated by

utilizing only integrating units and adders (e.g., Ref. 8). For

example, with a mechanical differential analyser the basic units

are a ball-disc integrator and a differential. In the synthesis of

countup-countdown machines, the integrator model of Fig. 2.2 and

the anti-colncidence circuit which permits the summationof two

pulse streams will serve as these operational units. It should be

reemphasized that the principle design elements were recognized as

entities only for purposes of synthesis, and that the fabrication

of the actual machines may permit circuit simplification which may

result in reductions of the hardware requirements.

The first step in this synthesis is to express the function to

be generated as a differential equation such that the highest order

derivative is isolated; i.e.,

fe2 
-- f xm l'

xh (3.1)
• "' dx' y' J

The independent variable in the above equation is represented by a
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clock. The next step in the synthesis is to assumethat a circuit

has been designed to generate the highest order derivative. Inte-

grators maythen be used to successively reduce the order of the

derivative according to the equation

(3.2)
dx k_l dx k

A circuit for generating the highest order derivative, whose exis-

tence had previously been assumed, may now be developed by the con-

straint defined by the right hand side of Eq. (5.1). The above

process terminates the design of the basic configuration for gener-

ating the function.

The schematic diagram of the machine just designed must then

be scaled in order to (1) exactly match the defining equation and

(2) accommodate the range of variables in a finite machine. In par-

ticular, the counters which are used in the machine configuration to

handle magnitudes having a finite excursion based on the number of

stages. Therefore, when a bidirectional counter is used then its

magnitude must be such that

Icounter value I <_ 2n - 1 (3.3)

Since the level setting _of a BRM must be less than one, then when

a counter is used for this purpose its scale _will_be reduced

accordingly, i.e.,

[level setting of BRM] = 2 -n [counter value] (3.4)

Finally, the scale of both sides of the defining equation; i.e.,

Eq. (3.1), must be the same.



This procedure maybe reduced to a finite numberof steps. A

synopsis of these steps is as follows:

Ste_ 1. Isolate the highest order derivative in the differential

equation as shown in Eq. (3.1).

Step2. Assume the highest order derivative has been generated in

a counter.

Step S. Generate each successive lower derivative by using an

integrating unit.

Step_. Constraint the independent variable_ the function, and its

derivatives according to the right hand side of Eq. (3.1) and con-

nect its output directly to the counter representing the highest

order derivative.

Step 5. Assign arbitrary constants to the independent variable and

its highest order derivative.

Ste__t___8.Write constraint equations at each counter based on the

maximum excursion and number of stages.

_. Write constraint equation based on the defining equation.

Step 8. Calculate scale factors to satisfy the equations of Steps 6

and 7.

We continue with the application of this procedure in the de-

sign of specific countdown-countup machines. The first two exam-

ples will be a machine for generating the exponentiallfunction_nd

another machine for generating the sine-cosine functions. These

two machines will be illustrated in detail.
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Exponential Function

The differential equation

y' = y, y(0) = 1

whose solution is

will be used to design the circuit for generating the exponential

function. The design solution for this circuit is presented in

Fig. 3.1. The detail procedure for this synthesis is as follows:

Step 1. The defining differential equation given by Eq. (3.5) is in

the desired form.

Step 2. Assume a circuit has been designed to generate the highest

order derivative. This is represented by the line labeled y' in

Fig. 3.1a.

Step 3. The function y is generated by integrating y'.

Step 4. Since by Eq. (5.5) the assumed highest order derivative

y' is equal to y, then y is directly connected to the line y'.

This completes the basic circuit shown in Fig. 3.1a.

Ste_ 5. This is the first step in the design of the scaled circuit

shown in Fig. 5:lb. The arbitrary constants A and B are assigned as

scale factors to the independent variable and the highest order

derivative, respectively. The interpretation of A is "A counts

per unit of x". The interpretation of B is "B counts per unit

of y'" Note that the scale factor of the counter in Fig. 3.1b:is

reduced by 2-n when it is used to set the levels of the BRM. If

the value of the counter is By' counts, then the level setting of

the BRM is 2-nBy '.

y --ex (3.6)
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Ste_p_ o

o

the following constraint equation.

By' = 2"nABy

Step 8. From Eq. (3.8) it can be calculated that

A = 2n counts/unit of x

Constraint equations are written for the counter; i.e.,

[2-n_ylmax <_2n - 1 (3.7)

The mechanization of the defining equation is justified by

(s.8)

(3.9)

The calculation of B depends on the maximum excursion of the

variable y according to the equation

BlYmaxl _ 2n - 1 (3.10)

This essentially completes the schematic design of the circuit for

generating ex.

In order to select the number of stages; i.e., n, it would be

desirable if an equation were available relating n to the accuracy

of the machine. Unfortunately, the equation obtained in CHAPTER II

is not suitable for this purpose. This may be demonstrated for this

machine by calculating the bound given by Eq. (2.26) for various

values of n. Using _L = 1 and Ymax = e for this process, then

_/7/92 n+l+n/5 e(e - l) = 1.90777 2n+5n (3.11)
E

Eq. (3.11) may then be used to calculate the bound for this machine.

These calculated values are presented in tabular form in Table 5.1

for various values of n.
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TABLE3.1 - ERRORBOUNDFOR
EXPONENTIALMACHINE

n Bound
6 1.190
7 .892
8 .66_

9 ._91

lO .562

This bound does have the property, which was observed earlier,

of decreasing as n increases. Unfortunately, it does not decrease

rapidly enough for design purposes.

Using a value of Ymax < 5.2, some values of B have been

calculated and are given in Table 5.2 together with the initial

value of the counter to match the initial condition y(O) =l.

TABLE .5,2 - SCAL_ FACTORS AND INITIAL CONDITIONS

OF EXPONENTIAL MACHINE

n A B Initial counter

S

6

7

8

52

6_

128

256

i0

2O

4O

8O

value

lO

2O

_0

8O

This series of machines have been simulated on a computer and the

results are presented in Fig. 5.2. When these results are compared

to the desired output it is immediately observed that these results

are much better than those predicted by the error bounds given by

Eq. (5.11). Moreover, the five and seven stage machines are seen

to give better results than the six and eight stage machines.

A more_realistic evaluation of the results presented in

Fig. 3.2 would be to compare them to the difference equation solu-

tion. The difference equation for the exponentialmachine may be



.. 50

By

180

160

140

120

100

80 J

60

40,,.---"

20

0

J

f-

J

f _a) hve istacjis

20 40

J

J
!"

J
f

/_(b) Six stages

Sevenstages

60 80 100 120 140 160
Ax

._ (d) Eight stages

Figure 3.2. - Exponential machine output.

180 200

I



51
-_

obtained directly from Fig. 5.5, which is identical to the circuit

shown in Fig. 3.1 but labeled according to Euler's integration.

The scale factor associated with the counter is "B pulses per unit

of y." When the counter is at iterative step k-l, then its value

is at Y(k-1)" During this iteration 2n &x pulses arrive at the

BRM counter and the BRM puts out BY(k_l) _x pulses. These output

pulses are added to the counter to form the counter value for

iterative step k. Mathematically the value of the counter may be

expressed by the difference equation

BY(k ) = BY(k_l) + BY(k_l ) _x (3.12)

If each clock pulse is taken as an iterative step then 2_x = 2-n

and Eq. (5.12) may be rewritten as

Y(k) = Y(k-l) (I + 2-n) (5.15)

Solving Eq. (5.15) in terms of the initial conditions of y (i.e.,

y(O) = i), then

Y(k) = (i + 2-n) k (3.14)

The difference between the difference equation solution and

the differential equation solution is the truncation error of the

process. The difference between the difference equation solution

and the actual output is error due to round-off and is illustrated

by the difference in the curves shown in Fig. 5.2. Since the

round-off error has been shown to be dependent on the starting value

of the BRM, it can be changed by using a different starting value

with the objective of obtaining better agreement between the

solution and the actual output. Fig. 5.4 presents the actual output
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_Y(k-1)

Figure 3.3. - Approximate exponential generator.
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Figure 3.4. - Output of six-stage exponential machine.
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for the six stage BRM for a number of starting values together with

a plot of the desired results. It is noted that by this simple

means measurable improvement has been attained in the total error.

Finally, consider a configuration of this machine built out of

logic elements on the Case Logic Breadboard (see Ref. lO) for gener-

ating the function. This is shown for a four stage system in

Fig. 3.5. Since the exponential function is a monotonic increasing

function, the counter shown in this circuit is a simple forward

counter.

The synthesis and analysis of a countup-countdown machine for

the generation of the general exponential function

y = y0

from the differential equation

y' = _y, y(O) = YO (3.1e)

follows with only minor modification the design of the machine for

generating ex. The schematic diagram for this machine is given in

Fig. 3.6a and the logical design is given in Fig. 3.6b.

Sine-Cosine Generator

The differential equation

y" = -y, y'(O) = O, y(O) = i (3.17)

is used to design the sine-cosine generator. The basic schematic

diagram and the scaled schematic diagram are shown in Figs. 3.7a

and 3.7b, respectively, and may be developed systematically as

follows :

Step 1. The defining differential equation given by Eq. (3.17) is

in the desired form.



Q3
I=:

r-

E

o_

C::

I-
0
r-i
X
G_P

v.l.m
0

E

._

OD

8 _
.-.I

!

G_

.__
LL



; 55

o

X

0_

"E}

._u

E

p.

"1--

k

"'1-

7"-

7"

___._)
Y

C: t"-

o=

¢D

t.3
!

,:3

IL



.. 56

l

dx

l I

dy

dy'

l

sin x

-y

COS X

(a) Basicdesign.

A dx

A2B2 -2n dy

AB2-n dy'

AB2-2ny,

A2B2-2ny

(b) Scaled design.

Figure 3. 7. - Sin-cos generator.
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Step2.

highest order derivative.

y" in Fig. 3.7a.

Step 3.

function

Step 4.

Assume that a circuit has been designed to generate the

This is represented by the line labeled

The function y' is generated by integrating y", and the

y is generated by integrating y'.

Since y enters the differential equation negatively, the

pulses arriving at the y counter have a sign change with the re-

sult that the output of the counter is -y corresponding to y"

(see defining equation).

Step 5. Arbitrary constants A and B are assigned as scale

factors to the independent variable and the highest order

derivative, respectively. The interpretation of A is "A counts

per unit of x" (i.e., per radian). The interpretation of B is

"B counts per unit of y ". If y' counter is set to 0 and y

counter is set to -1 (note that this corresponds to the cosine

being +l), then y' will countup to generate sine and y will

countdown to generate the cosine.

Step 6. Constraint equations are written for each counter_ i.e.,

AB2-nlY' Imax _ 2n - 1 (3.18)

A2B2-2nlylmax _ 2n - i (3.19)

Step 7. Constraint equation is _ritten to justify the defining

equation.

By" = oA2B2-Zny (3.20)

Step 8. From Eqs. (3.10) to (3.12), the scale factors can be chosen.

A = 2n, Blylmax < 2n - 1 (3.21)
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Some choices for

Eq. (3.21).

A and B are given in Table 5.3 based on

TABLE 3.3 - SCALE FACTORS AND INITIAL

CONDITIONS FOR sin-cos MACHINE

n A B sin cos

counter counter

5 8 4, 0

16 8 0

5 52 16 0

6 6_ 52 0

-8

-16

-32

This series of machines has been simulated on a computer and the

results plotted on Fig. 5.8.

The truncation error associated with this circuit may be cal-

culated by solving the difference equations associated with this

circuit. Calling the values of the sine counter and cosine counter

at _terative step k "BS(k)" and "BC(k)_" respectively_ the differ-

ence equations at these two counters are:

_S(k) : BS(k_l)+ BC(k_l)

Be(k) : _C(k_l)- BS(k_l)

or more concisely

1
V2Sk = -Sk

where V2Sk is the second backward difference. Therefore, the

second derivative in this machine is approximated by the second

backward difference.

If each clock pulse is taken as in iterative step, then

Eq. (5.22) may be written in matrix form as

(3.22)

(3.23)
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I2-n 1(k

An approximate solution of Eq. (3.24) for large n

of the initial conditions

in terms

may be written as

Sik ) = (1 + k2 "2n-l) sin 2-nk (3.26)

C(k ) = (i + k2 "2n-l) cos 2-nk (5.27)

A quantitative evaluation of this circuit is complicated by the

fact that it is used to generate two functions. One method which

seems especially well suited for testing such a circuit is to plot

one output function with respect to the other function rather than

with respect to the independent variable. For the sin-cos generator

this is called the "circle test" since the resultant figure for a

perfect sin-cos generator would be a circle. Moreover, it is

possible to study the errors due to round-off independent of those

due to truncation by comparing the actual output to Eq. (3.24) out-

put. For the sin-cos generator a composite plot of the solution to

the difference equation may be simply obtained by expressing

Eqs. ,(3.26) and (3.27) in polar coordinates_ with the result that

p = (1 + 2-n-18) (5.28)

The difference between this equation and the circle represents the

truncation error of the process and is seen to increase as the

spiral of Archemedes. The results plotted in Fig. 5.8 are compared
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to the plot of Eq. (3.28) in Fig. (3.9) by this method.

Other Differential Equation Machines

The sinh and cos____hmachine is based on the differential equation

y" : +y (3.29)

The schematic diagram for this machine is similar to the sine-cosine

generator except that all outputs from the BRM's are added to the

counters. The basic circuit and the scaled circuit for this machine

is shown in Fig. 3.10. It will be noted from this diagram that the

values of A and B are defined by the equation set (5.50) below.

By" = A2B2-2ny

A=2 n

Biymaxl<_2n _ 1

BlY_x I <_2n- I (5.30)

The output for a sinh and cosh generator is plotted in Fig. 3.11

for a five stage system where B is chosen equal to 16. It is

instructive to display the p-sequence calculation from which these

results were obtained. These are shown in Fig. 5.12.

A series of other useful machines will be illustrated in this

section. In particular, if two pulse streams du and dv are

given, then the product, uv, may be generated by using the equation

duv = u dv + v du (3.51)

The basic design for this product machine is shown in Fig. 3.13.

The machine for generating the square of a function is shown

schematically in Fig. 3.14. This machine will generate the function

y : x2 (3.32)
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Three

Four stage

Five stage

Figure 3.9. - Sin-cos circle test.
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dx--

sinh x

cosh x

(a) Basicdesign.

_A2B2 -2n dy

A
_--_1 _ABZ-n dY' / _ I

sinh x

cosh x

(b) Scaleddesign.

Figure 3. 10. - Sinh-cosh generator.
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Figure3.11.- Outputof5 stage
sinh-coshmachine.
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du u

dv --_ v L_v du

Figure3.13. - Productmachine.

uv

2x dx

Figure 3. 14. - Square machine.

x 2
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and is based on the equation

y' = 2x (3.33)

The square machine is utilized as a subassembly in the machine

for generating the reciprocal of a function_ i.e.,

y = 11x (3.34)

The basic design for this reciprocal machine based on the differen-..

tial equation

y, = .y2 (3.35)

is shown in Fig. 5.15.

The machine for generating the solution to the second order

differential

y" + 2o._,y' + o._ y = o (3.36)

is shown in Fig. 3.16.

The tan machine is shown schematically in Fig. 5.17. This

machine is based on the differential equation

y' = 1 + y2 (3.37)

A similarity will be noted between this machine and that of the

reciprocal machine.

The square root machine is based on the solution of the differ-

ential equation

y' = -i/(2y) (3.38)

It will be noted by this equation that it will form a subassembly

of the reciprocal machine. That is, the differential equation

dz/dy = 2z 2 (3.59)
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tan x

2y dy -I
1 + tan2 x

Figure3. 17. - Tan machine.

dz/dY2dy "_ 2 dz I ; [
:1

2z = -lly ]_'j [_/

4z dz

Figure 3.18. - Squareroot machine.
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the points xi where

One simple form of

ative process

is used in order to form the function

z = -1/(2y) (3.4O)

The basic design of this machine is shown in Fig. 5.18.

Synthesis (Difference Equation)

Consider the iterative process of successive substitution in

the functional equation

X(k+l) =  (X(k)) (3.41)

where $(x) is chosen such that the fixed points of $(x) (i.e.,

xi = $(xi)) are the roots of f(x) = O.

might be x - f(x) which leads to the iter-

X(k+l ) = x(k) - f(x(k ))

A more general form is x - g(x)f(x) which leads to the iterative

process

X(k+l ) = X(k ) - g(x(k))f(x(k )) (5.45)

A restriction on g(x) in this latter form is that it has no zeros

that are not zeros of f(x) and that the multiplicity of its poles

at the zeros of f(x) be less than the multiplicity of the zeros

of f(x) at these points. With these restrictions, it can be

readily seen that the iterative Eq. (5.45) has fixed points at the

zeros of f(x) (i.e., x = x - 0). The function g(x) in Eq. (5.45)

is chosen so that the process converges.

The basic equation of a counter immediately suggests a method

for generating an equation of the form of Eq. (5.45). This method

of synthesis is simply to generate a pulse stream equal to g(x)f(x)
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and feed it into a counter.

follows:

Ste_ 1.

Step 2.

pulse stream equal to

setting of a BRM and

This procedure may be outlined as

Write the defining equation in the implicit formlg(x)f(x)= O.

Assume a counter with the value of x and generate a

g(x)f(x)p, where g(x)f(x) is the level

p is the input to the BRM counter.

Step 3. Feed back the pulse stream generated in Step 2 into the x

counter.

Step 4. Assign an arbitrary constant to each variable represented

in the machine.

Step 5. Write constraint equations and calculate the scale factors

such that these equations are satisfied.

Divide Algorithm

The machine for generating x such that

x = a/b (3.44)

may be designed as follows:

Step i. One way in which Eq. (3.44) may be rewritten to put it

into the desired form is

xb - a = 0 (3.45)

Step 2. Assuming a counter value representing x, a pulse stream

equal to xb - a may be generated. This is shown in Fig. 3.19a.

Step 3. The pulse stream generated in Step 2 is fed into the

counter representing x.

Step 4. The schematic of Fig. 3.19a is redrawn in Fig. 3.19b, and

each variable is assigned an arbitrary constant.
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a

x pxb

b_

(a) Basic design.

P--_ pAa2-n

Aa--_ +_

c__'-,, _Cx_-n_, _

(b) Scaled design.

Figure 3. 19. - Divide algorithm.

X

Figure 3. 20. - Non-convergent divide algorithm.
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_. The constraint equations may be written directly from

Fig. 3.19b, in Whlch;an iteration is taken every clock pulse.

C1_xl <_2n - 1

Alamaxl _< 2n - 1

Blbmaxl_ 2 n- 1

CX(k+l):_=_ CX(k) -BbCx(k:) '2_'2n + Aa2-n

Suppose for the sake of argument that

A=B=C=2 n

Eq. (3.48 ) implies that

(3.48)

(3.52)

(3.53)

(5.54)

(5.55)

_(k) --x - X(k)

then from Eqs. (3.50) and (5.51)

8(k+l) = (I - b2-n)8(k)

This may be written in terms of _(0) as

_(k) = (i - b2-n)k_(o)

This process will converge if

iim 8(k) = 0
k*_

which implies the condition

Xma x <_i - 2-n

ama x <_ i - 2-n

bma x <_ 1 - 2-n (3.49)

and Eq. (5.47) may be rewritten as

X(k÷l)L=: x(k ) -: 2"DbX(k ) + a_ -n (5.50)

If Eq. (5.50) converges to a fixed point, x, then

x = x -2-nbx + a2 -n (3.51)

If 8(k) is the iterative truncation error at iterative step k; i.e,
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il _.b2-ni< i (3._6)

for convergence. Therefore, by Eq. (5.56) the process is seen to

converge. However, if the sign of the outputs of the BRM are re-

versed such as shown in Fig. 3.20, then an analysis will show that

the process will not converge.

Other Difference Equation Machines

The square root machine; i.e.,

x : _ (3.57)

may be designed by finding the zeros of the equation

x2 - a= 0 (3.58)

This machine is shown schematically in Fig. 5.21. If the scale

factor of x and a are both taken as 2n, then an analysis

similar to that of the divide algorithm shows the iterative process

_ 2-nx 2,
X(k+l)[ =::X(k) i : (k) +:2-na (3.59)

is generated by the machine. The iteration truncation error for

this equation may be written as

_(k+l)i:-_i- 2-n:(x+:x(k))_(k)

where x

to converge is that

Since

(3.6o)

is the solution. A sufficient condition for this process

(3.61)I ii- 2-nt_.÷:x{ki)l< 1

Xma x < i (5.62)

with the scale factor chosen, then the process converges, however,

had we chosen
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x2p

ap
I

Figure 3. 21. -Iterative processsquare root machine.

xp

Figure 3. 22. - Iterative processproduct machine.
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x(k+lZ) = X(k ) _-2"n(a :-X(k)) 2 (3.83)

as the iterative process, then the process would not converge.

A product machine may also be designed using this method of

synthesis. In particular, if

x = ab

then the product may be found by the iterative process

X(k_l)l =::x(k) - p(x(k ) -lab) (3.65)

This machine is shown in Fig. 3.22. If the scale factors for x,

a, and b are all taken as 2n, then the machine generates the

iterative process

X(k+l ) = X(k ) - 2-n(x(k) - ab) (3.66)

The iterative truncation error for this machine in terms of

e(o) is

8(k) = (1 - 2-n)ks(o) (3.67)

Synthesis (Regenerative Circuit)

Consider the schematic diagram shown in Fig. 3.23. The value

of K is bounded such that

IKI<_ - 2 -n (3.68)

The output equation for this circuit may be written as

dz = K(dx + dz)

dz K
= _ (3.69)

As K _ 1 in Eq. (5.69) then the ratio dz/dx _ _. However_

Eq. (3.68) fixes an upper bound on this ratio such that

K .= 2n _ i (3.70)
1 -K
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dx+ dz

Figure 3.23.
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Therefore, by using this regenerative circuit, the BRM may act as

an amplifier. However, if large amplifications are to be considered

other factors must be taken into account. In particular, suppose a

dx pulse arrives at the BRM and this generates a dz pulse. The

dz pulse is delayed by a gated pulse generator and is fed back to

the BRM. This in turn may generate another dz pulse. This process

may be continued depending on the value of K. However, each time a

dz pulse is recirculated the pulse shape deteriorates. For example,

if leading edge logic is used then the rise time of each pulse will

be increased until the dz pulse is not sharp enough to be utilized.

Moreover, enough time must be allowed between the dx pulses to

permit the maximum number of dz pulses. The maximum value of K

usually utilized in these circuits will in general be less than

that permitted by Eq. (3.68).

This point is illustrated by the plot of Eq. (3.69) in

Fig. 3.24. If -1 < K < 1/2 then at most 1 pulse will be fed back

with each input pulse. If 1/2 < K < 1 then more than 1 pulse will

be fed back with each input pulse. Therefore, by fixing the upper

value of K, the maximum number of feed-back pulses may be re-

stricted.

The method of synthesis in this section is similar to that

used in the synthesis by differential equation. However, in this

section the differential equation will involve the highest order

derivative on both sides of the equation; i.e.,

kix m
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In general the equation is written in this form when the highest

order derivative can not be isolated In particular, if the highest

order derivative has a non-constant coefficient then it may be

written as Eq. (3.71) by adding and subtracting a constant from

this coefficient (see Refs. 6 and 7). The design of the circuit

based on Eq. (3.71) implies the use of the regenerative circuit

since the generation of the highest order derivative involves itself.

Square Root Machine

Consider the generation of the square root

from the equation

y _=_ lie (3.73)

The first step of this technique is to write Eq. (3.75) as

(y - c + c)_ = 1/p (3.7_)
dx

and then isolate the highest order derivative as shown in the

following equation.

dy = _ - (y - C)d (5.75)

The basic and scaled circuit for generating Eq. (5.75) is shown in

Figs. 3.25a and 5.25b, respectively. Following the same technique

used to derive a machine based on a differential equation_ the con-

straint equations are written.

A dy = B dx - A22-n(y - C)dy (5.76)

is the defining equation for the machine, and

< 2n 1 (5.77)Ale - Yl_x- -
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I
(a) Basicdesign.

A dy _ A22-n(Y _ C)dy

A(y -_

B dx - A22-n(y - C)dy

(b) Scaleddesign.

Figure3. 25. - Regenerativecircuit square root machine.

Figure 3.26. - Scaleddiagramfor four-stagesquare root machine.
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is the counter limiting equation. From these equations the scale

factors may be computed by

A = 2n/c, B = 2n'i/c 2 (3.78)

where C is chosen such that it satisfies the inequality

Ii- Climax<_ i - 2 "n (3.79)

Based on this design, Fig. 3.26 gives the computed scales and cir-

cuit for a four stage regenerative circuit square root machine.

The output of this machine together with that of the desired output

is shown in Fig. 3.27.

Other Regenerative Circuit Machines

The natural lo6arithm machine

y = _ x (3.80)

may be designed as a regenerative circuit by the equation

= _ + dy (3.81)

The circuit for generating this function is shown in Fig. 3.88.

The _uotient machine

z :x/y (3.82)

may be designed as a regenerative circuit by the equation

= ![(y _ a) dz + z _y - _3 (3.83)dz
a

The schematic circuit for this function is shown in Fig. 5.29.
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Figure3.27. - Outputof regenerative
circuit squarerootmachine.
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Figure3. 28. - Regenerativecircuit Iogrithm machine.

__- a)dz

y-a

" z dy + + dz ___

Figure3.29. - Regenerativecircuit quotientmachine.
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CHAPTER IV

PIECEWISE POLYNOMIAL MACHINES

Polynomial Machines

When a function to be generated is available only as empirical

data (e.g., such as in sampled data systems) then the design must

be based on generating an approximation function. Various classes

of approximation functions and techniques for obtaining approx-

mations have received considerable attention in the literature

(e.g.j see Ref. l_). A particularly convenient form for approxi.

mating a continuous function is that of a polynomial. The general

polynomial

a2 x 2amxm am-1 xm-1 + + _. + alx + a0 (4.1)f(x) = m--T-.+ (m- i)! " "

may be generated by the circuit shown in Fig. A.1. However, it is

usually the case that all the data is not immediately available for

generating the function over its entire range, or if it is available

the polynomial needed to meet the accuracy requirements is of ex-

cessively high degree. In these applications the requirements of

the problem may be met by using a series of relatively low degree

polynomials where each polynomial is used to fit data only in a

restricted range. Such machines are called piecewise polynomial

machines.

Because of their wide spread use in applications (see Refs. 9,
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ll, 18, and 19) and also because they can be realized with relatively

simple circuits_ this chapter will be devoted exclusively to de-

scribing a series of machines for generating piecewise polynomials

arising from finite difference techniques. These machines are

grouped into two broad categories based on applications; i.e._

interpolation or extrapolation. Each machine of this series will

generate a low order polynomial fitted to data available at equal

intervals of the argument. In passing from one segment into the

next new data is introduced. The form of the data in each case is

simply generated from the empirical data.

In order to facilitate the description of the machines in the

next two sections_ ordinary difference notation will be used. In

particular, a_n is the value of the independent variable where the

value of the function is obtained; i.e._

f( n) = fn (4.2)

The quantity 5_ represents the spacing of the independent vari-

able_ and _n_ _ o, _ are the successive differences which

may be obtained from lower order differences as follows:

_n = fn+l - fn

_m-i _ Am-i (4.5)q_ n+l n

In formulating the approximation formula which passes through

the given points_ it is convenient to display these various differ-

ences in tabular form as shown in Fig° 4.2. From this difference
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f-2

'-_____-S __ ___

f_ z_- Ao""--z_3.
f2 i Z&2] O_

AO
f3

Gregory-NewtonBackwardformu la

Newton-Sterling formu la
Newton-Besselformula

Gregory-NewtonForwardformula

(a) Direct path difference formulas.

zs__ zs3_2

fo _" "___1 _ Newton-GaussBackwardformula

Newton-GaussForwardformula

zs_s_
(b) Broken path difference formulas.

Figure4. 2. - Difference table and paths of difference formulas.
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table, alternate forms of the approximation formula may be derived

dependent on the differences which are utilized; i.e., on the path

through the difference table. The paths of some of these formulas

are shown in Fig. 4.2. The form of the formula which will be

utilized in the following discussion will be such that in each case

the value of the variable x will vary from 0 to 1 in the interval

of interest.

Interpolation

A piecewise linear interpolator can be obtained by passing a

linear polynomial through successive pair of points of the function

to be generated. This scheme is illustrated in Fig. 4.5. A linear

polynomial is generated which passes through the points PO and Pl"

At the point P1, the point P2 is added to the scheme and a linear

polynomial is generated which passes through the points P1 and P2"

This procedure may be expressed in terms of ordinary differences by

the Gregory-Newton interpolation formula; i.e.,

f(_n+ x_) = fn + _nx (4.4)

The first derivative of this formula is

_'(% + xao) : _ (4.s)

This interpolation formula may be generated by the linear polynomial

generator shown in Fig. A.4a.

The corresponding equation and its first derivative for the

next interpolation interval is given by,

f(ah+ 1 + x_xo) : fn+l + &n+l x (4.6)

_'(%+1 + x_) : _+l (4.7)
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f(x)

PO

X

Figure 4. 3. - Schemefor piecewise
linear interpolation.

• -.An+2,An+l --_
A n

(a) First difference input data.

• "" fn+3,fn+2 --_

fn

fn+l

dx -----=

dx

t
(b) Function values input data.

Figure 4. 4. - Machines for piecewise linear interpolation.
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At the end of the first interval of the values of the function

and its derivative given by equations (4.4) and (4.5) are

f(a h + 5_) : fn + An = fn+l (4.81)

+ : (4.9)

The corresponding values of these two quantities needed at the start

of the next interval are given by Eqs. (4.6) and (4.7) and are:

f(%+l ) : fn+l (4.10)

: An+l (4.11)

By direct computation it may be verified that in order to proceed

from one interval to the next, the quantity _ (which is An+l - 2m)

needs to be added to the setting of the BRM, and the output (i.e.,

the end point of the interpolation interval) need not be modified.

However, since adders have been excluded as basic design elements,

the same result may be attained by transferring 2_+ 1 as the set-

ting of the BRM (since _n+l = £_n + _)- Consequently, the circuit

shown in Fig. 4.4a may be used for piecewise linear interpolation

of a function by transferring successive first difference as set-

tings for the BRM in order to proceed from one interval to the next.

The circuit derived above is well suited for an application in

which an incremental encoder is used to generate the input data. If

an absolute encoder is used to generate the primary data, then the

above circuit may be adapted for this input by using the defining

equation for first differences; i.e., Eq. (4.3). This circuit is

shown in Fig. 4._b. As in the previous case, only one new piece of

information must be transferred into the circuit in order to pro-

ceed from one interpolation interval to the next._ However, in this
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case, before the new information, i.e., fn+2, is transferred as the

setting of the lower BRM, the value of the lower BRM; i.e., fn+l,

must be transferred to the upper one.

Two piecewise quadratic interpolators will be derived. The

scheme for the first one which will be called the back interval

quadratic interpolator is illustrated in Fig. 4.5. A quadratic

polynomial is generated which passes through points P0, P1, and

P2" This polynomial is used to generate the curve between points

PO and Pl" The point P3 is then added to the scheme and a

quadratic polynomial is derived which passes through the points

P1, P2, and P3" This polynomial is then used to generate the curve

between P1 and P2"

This procedure may also be conveniently expressed by the

Gregory-Newton quadratic interpolation formula; i.eo

f(a_n + X_xo) = fn + AnX + x(x - i) 2_ (4.12)

The successive derivatives for this formula are

l _x (4o13)_'(_n + x_): (_ -[ a_)+

(_)2f,,(%+ x_) : a_ (4.14)

The corresponding equation and its derivatives for the next

interpolation interval are:

i An+l x2
f(a_+ 1 + x_xo) = fn+l + (_+l - _ 4+1 )x + "-_

1
_'(_+l + x_) : _+i -_ _+l + _+lx

(_)2f"(_+I + x_) : _+l

(4.1_)
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f(x)

P2 _-- P3

P0o,/

X

Figure4. 5. - Schemefor piecewisequa-
dratic interpolation (back interval).
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Consequently, the correction to be added to the second deriva-

tive, first derivative, and function at the end of the interval in

1
order to proceed to the next interval are _+i' -_ _+i' and O,

respectively. From this formulation, however, addition is required

in order to proceed from one interval into the next. A formulation

of this process which leads to the elimination of the explicit

adder is to splinter the polynomial given by Eq. (4.12) into the

following two polynomials.

x2
fa(a_n + xSe_) : fn +2_nX + _-

fb(_ ) ---+ x_0 = 2 x

where

f(% + x_) --fa(% + x_) + fb(% + x_)

The first and second derivatives of Eq. (4.18) are

(_)fa'(_ + x_) = _n + _x

n A2n

The corresponding splintering of Eq. (4.15) yields

2

fa(a_+l + x_) = fn+l + hh+l x+_ x2

• !

(_)fa(_+l + x_) : An+1 + _+ix

2 I,
(_) fa(%+l + x_) 2= 2_+ 1

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.25)

(4.24)

(4.25)

Consequently, no correction need be adder to the first deriva-

tive in generating the function fa" Eqs. (4.18) and (4.19) may

then be used to design the circuit shown in Fig. 4.6a. It will be

noted that in order to proceed from one interval to the next, only
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(a)Second difference input data.

fn

dx

An

An+1

(b) First difference input data.

• -" fn+4, fn+3

fn dx --_

fn+_ dx

dx--

fn+2 _--_

(c) Function values input data.

Figure 4. 6. - Machines for piecewise quadratic interpolation (back interval).

fn
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new second difference data need be transferred to set the levels of

the leftmost HRM.

Based on the defining equation for second differences; i.e.,

Eq. (4.3), the machines shown in Figs. 4.6b and 4.6c may be obtained

directly from the machine shoe in Fig. 4.6a. In these machines,

previous first differences and values of the function are trans-

ferred directly from the lower BRM's to the upper ones before a

new first difference and a value of the function, respectively, is

transferred into the lower'one in order to proceed fromone inter-

val into the next.

The scheme for piecewise front interval _uadratic interpolation

illustrated in Fig. 4.7 may be derived by use of the Newton-Gauss

interpolation formula given in the following equation.

f(a_ + xS_0) = fn + x An_ I + x(x + i) _-i (4.26)
2

If Eq. (4.26) is implemented directly, then the first deriva-

i
tive and second derivative must be corrected by adding _431

A_l' respectively, to these quantities in order to proceedand

from one interval to the next. The explicit need for an adder may

be avoided in a manner similar to that used in the previous discus-

sion by splintering Eq. (6.26) into the following pair of equations.

1 x2
fa (a_q+ xS(0) = fn + x 2h_ I + _ _-i (4.27)

1
fb(% + = x (4.28)

Based on this pair of equations, the circuit shown in Fig. 4.8a

may be derived directly. The machines shown in Figs. 4.8b and 4.8c
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f(x)

PO /
0

P2 P3

__°
Ply"

/
/

/

X

Figure 4. 7. - Scheme for piecewise qua-
dratic interpolation (front interval).
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dx

(a) Seconddifferenceinput data.

fn

dx

An-1

dx

An

(b) First difference input data.

•" fn+3,fn+2 "_

fn-1 dx --_

2 dx _.fn

fn+l dx _

(c) Function values input data.

Figure 4. 8. - Machines for piecewise quadratic interpolation (front interval).

fn
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are adapted from the circuit shown in Fig. 4.8a by using the defini-

tion of the second difference given in Eq. (4.3).

A cubic interpolator may be obtained from the Newton-Gauss

interpolation; i.e.,

i x(x-i) 1 x(x-l)(x+i) (4.29)f(o-h+ xSo_)= fn + x An+ [

However, in this case the discussion will be limited to using this

formula for central interval interpolation only. This scheme is

illustrated in Fig. 4.9. The points P0, P1, P2, and P3 are used

to generate an interpolation formula for interpolating between P1

and P2" The point P4 is then added to the scheme and the points

P1, P2, P3, and P4 are used to interpolate between points P2

and P3.

Eq. (4.29) may be applied directly to yield a central interval

cubic interpolator. However, in this case the third, second, and

1
first derivatives must be corrected by adding f_-_l'O, and _&-_l

to these quantities, respectively, in order to proceed from one

interval to the next.

A configuration may be obtained which conforms with the design

practice of not using an adder by splintering Eq. (4.29) into the

following pair of equations.

(An 1 ) x2 x5fa(O.h + x__o) = fn + x - [ f_-i + "[- 2_-i + "_- f_-i (4:.30)

x (4 31)fb(_n + x_o) = -_ _i

Based on this pair of equations, a circuit may be obtained such

that the function, its first derivative, and its second derivative
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fix)

P3 P4

p/_/__ - -_o

P}/
/

PO /'
0

X

Figure 4. 9. - Scheme for piecewise
cubic interpolation (central in-
terval).
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need not be changed in order to proceed from one interval to the

next. This circuit is shown in Fig. 4.10a. The circuits presented

in Figs. 41.10b, 4.10c, and 4.10d are modifications of this circuit

based on the definition of the third difference.

Extrapolation

Extrapolation presents an added problem in that the output of

the machine must also be corrected in order to proceed from one

interval to the next. This is illustrated in Fig. 4.11 for linear

extrapolation. A linear polynomial through P0 and P1 is used

to extrapolated the values from P1 to P_. The point P2 is

then added to the scheme, and a linear polynomial through P1 and

P2 is used to extrapolate the next interval. The predicted value

P_ and the new value P2 can be expected to be different. Con-

sequently_ the output must be corrected for this new value P2- In

order to avoid putting a jump in the output function at this point,

the scheme which will be employed is to put the correction in

linearly over the entire next interval. This scheme (as well as

that of quadratic extrapolation which will be described next) is

closely related to the Porter-Stoneman digital filters (see

Ref. 13) and may be extended accordingly.

The Gregory-Newton backward finite difference formula may be

used to design the linear extrapolation machine; i.e.,

f(% + = fn + an-lx (4.32)

The corresponding formula for extrapolating the next interval is

f(_n+l + xS_0) = fn+l + 2hx (4.53)
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f(x)
)i I 2c P1

PO

X

Figure 4. II. - Scheme for piece-
wise linear extrapolation.
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If these formulas are applied directly, then the circuit must

corrected at the end of the interval by adding i-1 to both thebe

function and its first derivative in order to proceed into the next

interval. This, however, would cause a jump in the output function

This jump may be avoided by putting the correction term in the out-

put in a linear manner over the entire next interval. The result-

ing polynomial has the property that its initial value corresponds

to the end point of Eq. (4.32) and its final value corresponds to

the end point of Eq. (4.33). A polynomial which satisfied these

constraints may be written as follows:

f(mn+l + x_xo) = (fn + an-l) + (2h + i-i )x (4.34)

The second difference in Eq. (4.34) may be eliminated by

using the defining equation given by Eq. (4.3). This substitution

yields the following equivalent equation.

f(%+l + = (fn+ an-l)+ (2% - %_l)X (4.3s)

Eq. (4.35) may be implemented to yield the linear extrapolator

shown in Fig. _.12.

The scheme for quadratic extrapolation is shown in Fig. 4.13.

The quadratic equation through points PO, PI, and P2 is used to

extrapolate the data to the point P_. The point P3 is then

added to the scheme and can in general be expected to be different

from P3"* The quadratic equation through the points P1; P2; and

P3 is then used to extrapolate to the point P_. In order to

avoid putting a jump in the output when new information is added
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f(x)

,I,

P3

P4

P1 /_/
2/

/
/

PO /
/

0

X

Figure 4. 13. - Schemefor piecewisequa-
dratic extrapolation.
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to the scheme, the correction may be put into the output in a

linear manner over the entire next interval in the same manner as

that employed for linear extrapolation.

The Gregory-Newton backward difference formula forms the

basis of the quadratic extrapolation. This formula may be written

as follows:

f(a h + xSe) : fn + x &n-1 + x(x + l) _-2
2

The corresponding formula for the next interval is:

f(a_+ 1 + xgxo) : fn+l + x 2h + x(x + i)2 An-1

If Eqs. (4.56) and (4.37) are implemented directly then the

quantities _-2, 31-2/2, and i-2 must be added to the output

function, its derivative, and its second derivative in order to

proceed from one interval to the other. As was indicated earlier;

the jump in the output function can be avoided by putting in the

correction over the entire next interval. A polynomial which

satisfies these constraints (i.e._ has the end of Eq. (4.56) as

its initial point and the end of Eq. (4.57) as its final point)

may be written as follows:

f(_n+l+ x_) : fn + _-i + _-z + (_ +
\

(_.3e)

(4.37)

into Eq. (4.38) yields

Substituting the difference relationship given by Eq. (4.5)

n-i +12 _ x +--_--x

(4.3s)
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f(_+l + x_) = fn + _-i + _-2

(
Eq. (4o59) may be splintered into the two equation

-i x 2
f_(_+l + x_) = fn + _-i + _-2 + _-i x +-7-

to yield the circuit shown in Fig. A.I_.

The circuits shown in Figs• 4.12 and _.IA may be readily ex-

panded by use of finite difference relations (as was done for

interpolators) to yield circuits which accept functional values

and first differences as the primary source of data.

(4.39)

(_._¢o)

(_._I)
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CONCLUSION

Summary

A handful of circuits have been reported in the literature

which have been designed to meet the needs of special purpose

digital computer problems arising from real time applications.

The organization of these circuits is to utilize simple counting

techniques as the basis for computing and result in a simplicity

of hardware which make them attractive for such special purpose

applications. The design of these circuits have been examined in

this study with the objective of (1) "explaining" the circuits and

(2) generalizing the design philosophy such that new circuits may be

admitted with the same organization. In order to be specific

we limited the principle design elements to three fundamental

units. The elements are (1) the binary rate multiplier which is a

means of scaling down a pulse stream to some specified fraction,

(2) the counter, and (3) the anti-coincidence circuit which is a

means of separating pulses arriving at a counter simultaneously.

These design elements are represented as operational units

which may be used to describe the machines. Operational techniques

are then used as the method of synthesis. In particular_ a counter

is utilized to represent a first order difference equation and a
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counter in cascade with a BRMis utilized to represent approximate

integration. The computational errors; i.e., rounding-off error

and truncation error, introduced into the machines as a result of

treating the principle design elements as operational units are

identified and studied in detail. The rule of round-off, which is

simply stated in conventional computers, is not as easily formu-

lated in these machines. Definite results, however, were obtained

and the rounding-off error was shownto be dependent on the start-

ing value of the BRMcounter as well as n, the numberof stages.

The approximate error bound of 7/9 + n/3 for the generated

round-off error proved to be disappointingly pessimistic for pre-

dicting the propagated error for design purposes. Nevertheless,

having identified these two sources are errors permitted us to

obtain better results experimentally by two methods; (1) in-

creasing the number of stages and (2) changing the round-off error

by changing the starting value of the BRMcounter.

The method of synthesis is presented in three parts; (1) ex-

pressing the function to be generated as a differential equation,

(2) expressing it as the fixed point of an iterative process,

and (3) expressing it in terms of a regenerative circuit which

is presented. The method of synthesis is explicitly stated and

is satisfactory in that all _nowncircuits maybe directly obtained

from it. A wide variety of other functions are also obtained using

these synthesis techniques. Manyof these examplesare illustrated

and in somecases actual experimental results were obtained and

/
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discussed with the machine.

A series of machines is presented for interpolation and ex-

trapolation of a function which is available only as empirical

data. In particular, the function is generated over its entire

range by a sequence of low order polynomials. Finite difference

techniquss are used to describe the polynomials. The order of

the polynomial is limited to a cubic for interpolation, and a

quadratic for extrapolation since these seem to be the important

cases in practice. Nevertheless, these techniques can be easily

extended to include higher order polynomials.

Recommendations for Further Investigations

We feed that the choice of principle design elements has

been correctly limited to units that operate as incremental devices.

It would be interesting to investigate other components in this

framework. In selecting the new components two approaches appear

apparent. First, the components used in this study may be sub-

divided into smaller functional units with a view of studying sim-

plification methods of the final design. Secondly, new functional

units may be introduced with a view of admitting new machines.

However, if components which operate on the whole word are included

they should be simple decision type circuits (e.g., sign and mag-

nitude comparators) and not new fundamental units like an adder

which Would dominate or supplanttheother components.

It is expected that using worst case conditions for obtaining

error bounds would not produce satisfactory design results which
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maybe used in the whole spectrum of problems. The study which

should produce good results would be to consider each circuit

individually and obtain deterministic design results which can be

applied to that circuit. In particular_ an algebraic approach as

was used in Appendices A and B might yield satisfactory results

for processes which involve only addition and multiplication such

as the generation of polynomials. For transcendental functions

the bounds may be obtained by experimental techniques or perhaps

by comparing the desired function to one which is attainable by

algebraic means.

New methods of synthesis should also be sought either to

include the pathological cases discussed earlier in the report

or to exclude them as possible machines.

Other piecewise curve fitting machines should also be stuided_

especially those in which functions other than low order polyno-

mials are used and those in which the first and higher order

derivatives are kept continuous.

The investigation of these machines would be facilitated if

hardware and good display facilities were available which would

permit the circuit to be easily fabricated and studied. We do

not have in mind the design of still another general purpose com-

puter since it is felt that these circuits best serve the needs

of special purpose applications.
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APPENDIXA

MULTIPLICATIONERRORBOUNDS(ZEROSTARTING)

In this section the error equation of an n-stage BRMwhose

counter starts with zero will be analyzed with the objective of ob-

taining tight error bounds. Nevertheless, someof the intermediate

results which will be obtained in this section are interesting in

their own right. Becausethis analysis is involved, we will proceed

formally. The basic outline is to use Eq. (2.8) to find the points

where the maximumpositive value is attained and then evaluate the

equation at these points. In a similar manner, Eq. (2_10) will be

used to find the minimumnegative value.

Webegin by stating and proving LemmaA.1.

Lemma A.1 A sufficient condition for E given by Eq. (2.8) to

attain its maximum value is that xi = y_i o

Eq. (2.8) may be rewritten as a bilinear expression such that

the terms which are dependent on either x i or Y-i are grouped

together. The quanity A in the resultant expression is independ-

ent of either xi or Y-i"

_- xiY-i " _- xi Y-i-1 + _- Y-i-2 + • " + ---:-'-Y-n21-n

i (i i i i) (A.I)- [ Y-i [ xi-i + Y xi-2 + " " " + _ x

By direct evaluation the value of this expression is as follows:
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_(o,o): A

E(0,1) = A - _ Y-i-i + " " " + .--r---Y-n21-n

•- _ xi_ 1 + . . . + 2i_---_x

Moreover, for the specific case when i is n then the value of

F,q. (A.I) is

_(o,o) : A

E(o,I) : A

_(i,o):k-_ Xn°i+. . . +_x

E(l,i)= A + i i (21- i )- _- Xn_ I + . . + _Xl

This lemma is proved by observing that the value of E when

xi = Y-i = 0 is always greater than or equal to the value of E

in both cases when xi _ Y-i and that for the nth component the

value of E is always greater when Xn = Y-n = 1.

Based on this lemma, the maximum value of Eq. (2.8) will be

found by finding the maximum of the quadratic form expression

x I

x2

Q(Xl,X 2, • . .,x n) = !Xl,X 2, • . .,Xn)M "

X n

Theorem A.I For all values of the components xi,

Q(1,x2,xs, • . .,x n) > Q(O,x2,x3, • . .,x n)

Eq. (A.2) may be rewritten such that A is a quadratic ex-

(A.2)

pression independent of xI.
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1Q(Xl,X2, . . .,xn) :A+x I l l in)xe-gx 3 • . . -7_x

By direction evaluation of Eq. (A.5)

Q(O, x2, . . .,Xn) = A

(1 1 2_% n)Q(1,x2, . . .,Xn) = A + - _-x 2 . . . - x

Since

1 1 1 1
m_

_- ix2 - _x 5 - . . 2nXn > 0

the n

Q(1,Xl,X 2, • . .,x n) > Q(0,Xl,X2, • . .,x n)

Theorem A.2 For all values of the components xi,

Q(Xz,Xe, • . .,xn.z,1) > Q(xl,x e, • . -,XnmZ,0)

This proof proceeds similar to Theorem A.1. Q may be re-

written as

where

1Q(Xl,X 2, • . .,Xn)=A • x n _" _Xn.1 - . . .

A is independent of x n.

2n

(A.3)

By direct evaluation

Q_Xl,X2, . . .,Xn_l,O ) = A
JJ

Q(xl,x2, . . .,Xn.l,l ) = A + i i- _- Xn. I -

1
m

2n Xl

Therefore

Q_Xl, X 2, • . .,Xn_l,l) > Q(Xl_X 2, •

Theorem A.5 For all values of the components xi,

Q(I,xg,x 3, • . .,Xn_l,l) = Q!l,xg,x 5, • . .,_n_l,l)

(A.4)



117

where _i is the complement of xi.

The difference

Q(l,x2,x 5, • . .,Xn.l,l) - Q(I,_2,_S, • . .,_n.l,l) =

fl 1
x2

(l,x2, • . .,Xn.l,l)M •

Xn-I

I1 j

-(1,x2,. .,_n.l,1)M

may be written equivalently as

x2

(X2, • • .,Xn.l)K

Xn_l

- _2' " " "'_-I )K

Xn-i
1 j

(A.5)

(A.6)

where
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Expanding Eq. (A.5) and using Eq. (A.7) to simplify the cross

product terms, then a typical term xi maybe written as

xi _--_ ....... -21 2n-i+l _

" xi g- _ 2n-i+l 4 " g - " " " "

i + 2n-_+ + xi " =_xi + xi) n--i+l
(A.8)

Since (xi + _) = i, then Eq. IA.6) is independent of the xi

variable _d the contribution from this te_ is

n_+l

Siml_ly the contribution to the difference e_ressed in

Eq. _A.6) from the term inv_ving Xn_i+ 1 is

(_ 2n_+_

Consequently, the contribution to the difference e_ressed by

Eq. (A.6) by each element may be paired by the contribution from

another element such as to cancel each other out of the expression.

If n ois odd, then the _d_e term cannot be paired. Butlsince

t_s is the (n + 1)/2 term, then by Eq. (A.9) its contribution is

i i 0

n+l)12 - 2(n+l :

_erefore, the value of the difference shown by Eq. (A.5) is

equal to zero. his implies that

Q(1,x2, . .,Xn_l,l) = Q(I,_, • • .,__l,l)

(A.IO)
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Lemma A. 2.

where

and

For v = x2,x5, • . .,x i and a = 1,0,i,0, . . .,i,0

Q(l,_,O,a,l) _ Q(l,v,l,a,l)

and _ are the component by component complement of v

a, respectively.

By Theorem A.5 it is noted that

Q(l,v,l,a,1)= Q(l,_,o,_,l)

Therefore, the difference between the two quadratic forms of

the lemma can be expressed as

5 = Q(l, _, O, a, l) - Q(I,_,O,_,I)

Partitioning the M matrix of Eq. (A.II) such that MI

M2 are compatible with the vectors, then 5 may be written as

8 : (l,V,O,a,1)M1 + (l,_,O,a,1)_

- (1,_,0,_,l)N - (i,_,0, _ )

But it will be noted that

(l,V,o,a,l)M1 : (1,_,O,_,l)

Therefore

It will now be proved by induction on the length of a

5 > O. It may be immediately verified that 5 = 0 for a

length zero. Assume that

when a is of length 2k.

(A.11)

and

(A.12)

(A.15)

that

of

5k _0 where 5k is the value of 5

It will now be verified that 5k+ I _ O.
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8k+1 = 5k+

1
x2
xz

m

xi

Oi+l

li+2

Oi+S

Oi+l

- 0i+2

ii+5

i i+2k-1

0 i+2k

i i+2k+l

0 i+2 k+2

i i+2k+Z

li+2k+4

Oi+2k-1

li+2k

Oi+2k+l

li+2k+2

0i+2k+5

li+2k+4

r i+2k+4-1/2 1

-i/2i+2k+51i/2i+2k+2

2k+5-112 /
2k+_ 1-

1122k+2 --

"116_: ]

.i/52

.i/16

.1/8

.1/_
1/2

/1

' -1/2 i+2k+4 1

1/2

x2

xi
Oi+l

0i+2

ii+5

Oi+2k

li+2k+]

ii+2k+2

Oi+l

0i+2

li+5

li+2k-1

Oi+2k

li+2k+l

0i+2k+2

li+2k+5

li+2k+4

-1/2 i+2 k+51

1:

1/2o j

.i/2i+2k+21

f_i/2i+2k+l

" 2k+S
-1/2

_1/22k+2

1_22k+l

21122_

"-1/8

-1/4:

1/2

i

(A.I&)
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The O's and l's in Eq. (A.l_) are subscripted to show their

position in the vector, and the vector itself is displayed as a

column rather than a row in order to show the correspondence be-

tween the terms which must be multiplied to form the value.

Multiplying out the terms of Eq. (A.l_), then

5k+l 5k + 1 1 (1 1 22_) 1= _ - _ + _-+ . . . + . 2i+2k+ 4

1 (_i+l --_2)- 22k+ 5 _i-1 + • • • + 12i-2

+i l(l+l 1 ) 1- _ _ + . . . + 22k. 2 2i+2k+2

22k+ 5 _i + g xi-i + • • • + 2i-'--_

3+3 ( i i ) s- 4" i"6 1 + _-+ . . . + 22__ 2 21+2k+ 4

22k+ 5 _i + _ xi-i + • " " + _ _2
(A.I5)

Using the relations

i+_+... + 2-Z_:_ i

and

i +$+... + 22---f__2= _ i-

_hen Eq. (A.I5) becomes

5k+ 1 = 5k +
i i i

22k+3 2i+2k+5 22k+4

i-2

--= xi_ j
23

j=O



!
123

But by direct evaluation

i-2

i _i - 1 i < 2 i22_+___7 xi_j+ 22k+_2i.I 22_+_
j=0

Therefore 8k+ 1 > 0.

Lemma A.3. For v = x2,x3, . . .,xf _ and a = 1,0,i,0, . . .,i,0

Q(l,_,l,0,a,l) >_ Q(1,v,0,0,a,1)

where V and _ are defined as in Lemma A.2.

Proceeding in a manner similar to Lemma A.2, it is first noted

by Theorem A.3 that

Q(l,v,0,0,a,1) = Q(I,_,I,I,_I)

Therefore, the difference between the two quadratic forms of

the lemma can be expressed as

= Q(1,_,1,o,a,l)- Q(I,_,I,1,_,I) (A.16)

Partitioning the M matrix of Eq. (A.16) such that M I and

M 2 are compatible with the vectors, then 5 may be written as

5 = (l,_',l,O,a-,l + (l,v',l,O,a_l)M4_

- (i,_,i,1,[,i) - (i,%1,1,[,i)_

But it will be noted that

Therefore

(l,V,l,o,_,1) :(1,v,1,1,_,1)M

8 = (1,_,1,o,a,1)M2 - (I,V,I,I,_,I)M2

(A.:7)

(A°i8)
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Using 5k to denote the value of 5 when a is of length

2k, it will now be proved by induction on the length of a that

1 1 1 1

8k >--_ _i + 22k+----__i-1 + " " " + 2i+2k+l _2 + 2i+2k+2
>0

(A.lS)

First we note that for a of length zero

50=

r1

x2
zs

xi
li+li

0i+2

|±i+5

_i/2i+3 ,

iI/16
-1/8

-i/4

:_/2

11 / .1/2i+2i •
li+l/ IlL8

-i/4
,li+21 •i/2
_li+5; ,o

1

_2

m

li+l

li+2;
li+3;

_1/2i+31
-1/2i+2 /

"1/16

-i/8
-IA
1/2

=l___x--i+ 1 -- 1
2 5 2-_ xi._l + . . . + 12i+l _2 + --2i+2 (A.20)

The notation used in Eq. (A.20) is similar to that used in

proving Lemma A.2.

Assume that 5k > 0, it will now be shown that 5k+ 1 > 0
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5k+1 = 5k+

x2
x5

m

xi

li+l
0i+2

li+s

0i÷4

li+2k+]
0i+2k+2

li+2k+_

0i+2k+4

li+2k+_

11-

il
1

- 0

1

Oi

• i
I

_i/2i+2k+5

• +

:7i_ )

'l

1
i

x2
x5

li+l
1

0

• i
• i

• i "
0 .

1
o , 2114
1 il2

'1 t\ i+2k+5 0

r_i/2i+2k+4_

i
/

li+l

ii+2
0i+5

ii+4

Oi+2k+l
ii+2k+21
ii+2k+3/

i/2i+2k+S

L

i/2

(A.21)

Multiplying out Eq. (A.21), then 5k+1 becomes
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ll(l l)8k+ 1 = 8k + _ - _ 1 + _ + . . . + 22k+ 2 22k+ 6 xi - .

1 - 1

2i+2k+4 x2 2i+2k+5
3+ i+ .... +

22 • 22k+ 5

3 -- 3 -- 3 i

+ _22k+_xi + " " " + 2i+2k+4 x2 + 2i+2k+5 + -2

. _ + _ + . . . + i 22_+3
4

22k+ 6 _i " • • •

4 X--2 - 4
2 i+2k+4 2i+2k+5

(A.22)

Equation (A.22) may be reduced to

5k+ I = 5k
i

22k+ 5 _i - " " "

i .T i

2i+2k+ 5 _2 " 2i+2k+ 4

(A.23)

Using Eq. (A.19), then the right hand side of Eq. (A.25)

becomes

> 1
22k+---_ _i + • • • +

I i

2i+2k+ 1 _2 + 2i+2k+ 2

1

22_÷5_i- • • •

i i >i- i i
2i+2k+ 5 _2 2i+2k+ _ 22k+ 5 xi + • • • 2i+2k+ 5 _2 + 2i+2k+ _

>0

Theorem A.4. There exists a v* such that for all v

Q(1,v*,0,a,1) >_ Q(l,v, xi+l,a,1 )

where v and a are defined as before.

First, we note that Q(l,v**,0,a,1) > Q(l,v,l,a,l) because sup-

pose it were false then there would exist a v** such that for all

of v

Q(l,v**,l,a,l) > Q(l,v,O,a,l)
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But from LemmaA.2

Q(1,_*,0,a,l) > Q(l,v**,l,a,l)

Therefore, a contradiction exists.

Moreover, we note that

Q(1,v ,0,a,l) Q(l,v,0,a,l)

that is, there is a largest.

V**

Therefore, Theorem A.4 is proved by choosing either v** or

for v*; that is, whichever make Q(1,v*,0,a,1) the largest.

Theorem A.5. There exists a v* such that for all v

Q(1,v*,1,o,a,l)>_Q(1,v,xi+l,o,a,l)

First, we note that Q(l,v**,l,O,a,l) >iQ(l,v,O,0,a,l)because

suppose it were false then there would exist a v_* such that for

all v

Q(l,v**,0,0,a,1) > Q(1,v,l,O,a,1)

But from LemmaA.5

Q(1,_**,l,O,a,1) _> Q(1,v**,O,O,a,1)

Therefore, a contradiction exist.

Moreover, a v** can be choosen such that

Q(1,v**,0,0,a,1) > Q(1,v,0,0,a,1)

Therefore

Theorem A.6.

Q(l,v*,l,O,a,l) _ Q(l,v,xi+l,O,a,l )

There exists a v* such that for all of v

Q(1,v*,O,1)t Q(1,v,xi+1,1)

First, we note that there exist a v** such that

Q(1,v**,0,1) _ Q(1,v,l,l), because suppose it were false then there
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But by TheoremA.3
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such that for all v

Q(l,v**,l,l) > Q(l,v,O,l)

Q(1,_*,O,1)= Q(1,v_ ,l,1)

Therefore,

Moreover, a

Therefore

a contradiction exists.

v_ can be chosen such that

Q(l,v**,o,1)_ Q(1,v,O,l)

Q(l,v*,O,1)h Q(l,v,xi+l,l)

It will now be demonstrated by an example how these theorems

can be used to obtain the value of x such that the error is the

maximum positive value. Suppose we consider a V-stage BRM. By

Theorem A.I and Theorem A.2

Q(l,x2,x3,x4,xs,x6, I) _ Q(Xl,X2,X3,X4,Xs,X6,X7)

by Theorem A.6

Q(1,x2,xs,xA,x5,0,1) > Q(1,x2,x3,xg,x5,x6,1)

by Theorem A.5

a(l,x_*,** **- ^-' * * * *x 5 ,x4 ,±,u, 1) _ Q(1,x2,xS,x4,x5,0,1)

by Theorem A.4

o,i)_> ,x4 ,i,o,1)

by Theorem A.5

Q(l,x *,!,0,!,0,i)-_ Q(!,x 2.*,x5,0,i,** O,1)

by Theorem A.6

Q(1,o,l,o,l,o,1) _ Q!l,x e ,1,o,l,o,1)
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Putting these inequalities together

Q(1,0,1,0,1,0,1) _ Q(Xl,X2,X3,X4,X5,X6,X7)

Moreover, by Theorem A.3

Q(l,l,O,l,0,1,1) _Q_(Xl,X2,X3,X4,X5,X6,X7)

Using the theorems in the pattern illustrated by the example,

it is easy to verify that the maximum positive value will occur at

the points shown in Table 2.4.

The maximum positive value of the error may be expressed con-

cisely as follows:

Let Emax(k I denote this value for an

is odd, then

En x(k+2) : %ax(k) +

ll

O2

13

ik

Ok+l

lk+21

k stage BRM. If k

_i/2k+2

'1/8
-1/4

(A.24)

Evaluating Eq. (A.25), this yields the difference equation

Emax(k+2) = Emax(k)+ 51-11+ 2-_ )
k

(A.25)

Solving Eq. (A.30) for a n stage BRM in terms of Emax(1)

yields:

[ n i
Emax(n) = Emax(!) - _ +

) 6 9, 2n

But Emax(l ) = 1/2
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Therefore, the maximum positive error of an n-stage BRM

where n is odd is:

7 n 1
m_x''_'n'-- yg +

6 9 -2n
(A._6)

If k is even, then

Emax(_+ 2) : Em_x(k)+

0S
14

0k-1
lk

%+1
lk+2

i"i/s-1/4

i/2

: %_x(_)
1 1 1

3 3 2k+2

(A.27)

Solving this difference equation for an n-stage BRM in terms

of Emax(2) and then evaluating the resultant expression for

Emax(2 ) = 3/4, yields

7 n i
Emax_n) = _-_+ _ + _ (A.28)

9"2n

Combining equations (A.26) and _(A.28) gives a closed form

equation for the maximum positive error of a n-stage BRM.

7 n (-1)n

EmS/(n) : [-_+ _ + 9.2n
(A.29)

By applying Eq. (2.10) the minimum negative value for a n

stage BRM can be obtained. Comparing the form of Eq. (2.8) to

Eq. (2.10), it is seen that our previous results can be utilized

with a slight modification• In particular, the value of the minimum
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is equal to the negative of the maximum and occur at points which

are the 2's complement of the maximum value. Consequently, the

minimum negative values will occur at the points shown in Table 2.5.
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APPENDIXB

MULTIPLICATIONERRORBOUNDS(ARBITRARYSTARTING)

The error formulas given by Eqs.(2•12) and (2.13) expresses

the multiplication error of a BRMwhosecounter starts with an

arbitrary value. Eq. (2.12) is the error formula resulting whenthe

maximumvalue of the actual output is considered at the points of

discontinuities• Eq. (2.13) is the companionequation resulting

whenthe minimumvalue of the actual output is considered at these

points. In this section these error formulas will be analyzed with

the objective of obtaining error bounds for a BRMwith this added

degree of freedom. Webegin by analyzing Eq. (2.12) to obtain the

maximumpositive error of an n stage BRM.

It is convenient for this discussion to define a vector b

such that

i lil
i
! Y-2

• _ _ M

'-n # .n

Theorem B.1 For all xk and xSk

Moreover, if

n

(B.I)

in Eq. (2.12), G <__lb_il.

n

Y-k = Xk = _Sk then G = _ Ib_il

i_l

notes the complement of Xsk.

i=l

where _Sk de-
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The elements of the vector defined by Eq. (B.1) are

--gy-i- y-2+gy-3 +. • •+_y-

1 (f i i n)b-2 = _ Y-2 " Y-3 + _Y-4 + • • • + 2n.---_y-

/_

b,k = i If

i
_-Y-k " Y-k-i + _Y-k-2 + • • • +

1
b-n = _ Y-n

Since 1/2 > 1/4 + . . • + i/2 n then

b.k <_ 0 if Y-k = 0

> 0 if y_k = i (B.2)

It is next noted that each element (xk - xSk ) may have only

three possible values; that is, 0,i, or -i. This may be verified

by direct computation.

Since

xIbxkxiol°xll°0
IXk - XSk I <_ i then

G = (xI - xs1)b_l + _x2 - x_)b.2 + •

(B.3)

n

• . + (xn - Xsn)b_n <__ Ib-il

i=l

(B.4)

A sufficient condition for G to attain the upper bound of
n

Eq. (B.4), that is, _ Ib_il, is that:
i=l
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(xk - Xsk) = -1 if b < 0
-k

= +l if b_k > 0 (B.5)

Combining (B.2), !B.S), and (B.5) results in

o|<o!...._- Io|_ J
I _ :0 I,:_!% Ii10 !

_nerefore_ Y-k = Xk = _Sk is a sufficient condition for
n

i=l

As a consequence of Theorem B.I the maximum of G_ denoted by
n

Gmax, is such that Gma x = max _ Ib_il. _I_ pzocedure which is: to Be

Y i=l n

followed is to find the value y where the maximum of _ Ib il

i=l

is attained and then evaluating this function. In order to aid this

analysis the notation b_i(y ) is introduced, where

Y = Y-lJ-2 '' " ',Y-n and b_i!y ) denotes the value b i for the

vector (y_l,Y.2 , " "'Y-n)" For an n stage BRM, all possible

b_i(y ! values may be obtained by multiplying M with all possible

values of y. We will call this particular matrix Bn.
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Theorem B.2. For all values of y, Ib.i(y) l = Ib_i(2n-y) I

This result follows by induction on the number of stages k.

It was shown as an example for the k = 2 case• Assume it is true

for the k = n - i case. Then the k = n case is

Bn_ =

i 2 2n-I - i i 2n-I - i i

2n 2n 2n 2 2n 2n

0

• Bn. I

0

Bn-i

where this case is partitioned to show its structure. This theorem

is obviously true for the first row. The b_i(y ) element for the

n - 1 case is now the b.i.l(y) and the b.i.l(2 n + y) elements of

the n case; and the b.i(2 n - y) element of the n - 1 case is

now the b_i_l(2n - y) and the b_i,l(2n + 2n - y) elements of the

Bn case• By the induction hypothesis Ib.i(y) l = Ib_i(2n - Y) I

for the n - 1 case. Therefore, these elements for the nth case

yield

and

Jb_i.l(y) j = Jb.i.l(2n+l - y) J

Ib_i_l (2n°- Y) J = Jb_i.l(2n + y) J

Substituting u = 2n - y into Eq. (B.8) then

Ib_i.l(U) l = Ib i.I(2 n+l - u) l

(B.7)

(B.8)

which completes the proof•
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Lemma B.1. There exists a y* in the domain

OlO . . . O0<y*<Olll . • .ll

_-i(y*)l>_ Ib-i(Y)J
i i

such that

This theorem states that Gma x is attained in the domain

0 1 0 . . . 0 0 < y < 0 1 1 . . • 1 1. As a result of Theorem B.1,
m

the search for a point where Gmax is attained can be immediately

restricted to the y domain 0 < y _l 0 0 . . . 00. Consider Bn

for these values of y.

The vector

1 2 1 1

2n 2n 4 " " " _ " " "

1
o

BL 0 _ 0...

t ; ;.../
-1/4
1/2 results from the y vector

0

1

0

.oj
_The

vector can be immediately ruled out.

The structure BL 1/2
0
0

BR in the above matrix is Bn_ 1.
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Because of Theorem B.2, the absolute values of the elements in BL

are identical to the absolute values of the elements BR. More-

over, since the elements of first row, that is, Ib l(y) l, increase

as y increases then for each column sum to the left of .1/l

0

there is a column sum to the right which exceeds it. Therefore,

Gma x must lie to the right.

As a result of Theorem B.2 and Lemma B.1, there must be at

least two values of y where Gma x is attained. For an n stage

BRM, we will call the y value corresponding to Gma x on the left

of y = lO00 . . 00,_ Ln; and the one on the right of

y = lO0 . . . 00, Rn-

Lemma B.2. For an n-stage BRM

ORn_ 1 < Ln < 0 1 1 . . . 1 1

This result follows from the proof of Lemma B.1. Since the

first row Ib l(y) l increasing then Gma x must lie between the

right maximum of Bn_ 1 and the rightmost value of Lemma B.1.

Lemma B.3. For an n-stage BRM

0 1 0 0 . . . 0<Ln<_O 1 Ln_ 2

Consider B n for the values of

OlO0 . . . O<y<Oll . . 1.
m

y of Lemma B.1, that is
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B

n

1 2n'2 + 1 2n-2 + 2

2n 2n

1 2n-2 - 1 2n-2 - 2

2 2n-1 2n-1
• • • 0

Bn-2 " /0

The sums of the absolute value of the first two rows are

S 2n'l + 2n-2 - i 2n'l + 2n-2 - 2

5' 2n ' 2n ' " " "

Therefore, this is a decreasing sequence• Since by Theorem B.2 and

Lemma B.1, Bn_ 2 attains at a maximum for at least two values, then

Gmax must lie between the leftmost value of Lemma B.1 and OiLn_ 2 .

Theorem B.3. For an n-stage BRM

ORn_ 1 < Ln <_ Ol Ln_ 2

This theorem is the combination of Lemma B.2 and Lemma B.5.

Theorem B._. Rn and L n are unique and ORn. 1 = Ln = 01 Ln_ 2.

This theorem follows immediately from the proofs of Lemma B.2

and Lemma B.5 by using the principle of strong induction as the

method of proof; that is, assume it is true for k < n and prove

for the case k = n.

The values of y where Gma x is attained can be found by

using Theorem B.4. These values are listed in Table B.1.
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TABLEB. VALUESOF y WHEREGmax IS ATTAINED

01Ln_ 2 ORn_ 1 Ln Rn

n Y-I'''Y-6 Y-I'''Y-6 Y-I'''Y-6 Y-I'''Y-6

011

0101

01011

010101

011

0101

01011

010101

i

01

011

0101

01011

010i0i

i

ii

i01

i011

I0101

I01011

The BRM counter value and starting value corresponding to the

y values listed in Table B. 1 can be obtained by Theorem B. 1. These

values are tabulated in Table 2.6.

An equation for Gma x as a function of n may be obtained by

a procedure similar to that used to obtain Ema x. In particular,

using the pattern established above a difference equation may be

written for n even, and a difference equation may be written for

n odd. Combining the solutions of these difference equations,

Gma x may be obtained as a function of n.

1 n (-i) n

Gmax(n) = _ + E - 9"2 n (B. 9)

Noting the similarity between the rightmost term of Eq. (2.13)

to that of Eq. (2.12), one may establish immediately a minimum error

bound when the BEM counter starts with an arbitrary value.

i0 n (-i) n
Hmin(n ) > - -@- - _ + (B. IO)

-- 9.2 n

A tight error bound may be obtained as follows: Expanding

Eq. (2.13), then equation for H may be expressed as

H : -XsRY.R- [(C 1 - Csl)b_l + (C2 - Cs2)b_2 + . . . + (Cn - Csn)b_n]

(B.ll)
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xSR identifies the rightmost 1 in the initial value of the

BRM counter. It may be simply argued that if a binary number has a

rightmost 1 in position R then its 2's complement also has a 1 in

that position and, moreover, has zeros at all positions j where

j < R. Therefore, xSR = CSR and CSj = 0 for all j < R.

Eq. (B.11) may be expressed as

CSRY_ R + IClb_l + C2b 2 + . . . + CR_lb_R+ 1

+ (CR - CsR)b_ R + [(CR+ 1 - CSR+I)b_R_ 1
L + . . . + (Cn-cSn)b__

or alternately as

-H = Clb I + C2b_ 2 + . . . + CRb_ R + (CR+ 1 - CSR+I)b_R_I

+ " • " + (Cn - Csn)b-n + CSR Y-R + _'Y-R-1 + "

(B.12)

Csj = _j for all j > R

and

y_. = C. for all j
J J

Therefore

IClb-ll÷  C2b-21+ ... + ICRb-Rl

+ I(CR+I- CSR+I)b_R_II+ .. • + l(Cn- CSn)b_nl

+ CSR Y-R + [ Y-R-I + • • (B.14)

The upper bound of -H is attained when equality is attained

in Eq. (B.14). It can be demonstrated by an argument similar to

that used in Theorem B.1, that the conditions for equality are



Therefore, Eq. (B.14) may be written as

-H = (C1,C2,C3, • • .,Cn)MI_il)Cn_C2.3

-(o,o,o,...o,_R+I,_R+2,...,_n)M
C1

C2

+ CSR CR + _ CR+I + . .

The last two terms in Eq. (B.15) is always nonnegative.

Moreover, the sum of these two terms is nondecreasing as R de-

creases. Since by Theorem A.1, C1 = i is a condition for maximiz-

ing the first term of Eq. (B.I5), it must also be a condition for

maximizing Eq. (B.15) itself•

Eq. (B.II) may be rewritten with this condition as follows

%cs%CnCn(iJ

(B.15)

(B.17)

Therefore, the equation for Hmi n can be immediately

written as :

l0 n - 1 (-1)n

Hmin(n) _ 'it- Gmax(n-1) =-'-9- 3 9.2n-i

(B.18)
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Based on this analysis CSI , xSl , Cl, Xl, and Y-I are equal

to 1 for Kmi n. The remaining stages are determined such as to

maximize G for an n - 1 stage BRM. The values of y, C, and

CS where Kmi n is attained are listed in Table B.3.

TABLE B. 3 C,[ y, AND CS WHERE Hmi n IS Ai_fAINED

n Y-I"" "Y-6

2 ii

3 i01

4 i011

5 i0101

6 i01011

C6 •..C I

ii

i01

ii01

i0101

ii0101

CS6. •.CSI

Ol

011

0011

01011

O01011

n Y-I" ""Y-6 C6"" "Cl CS6" ""CsI

ii

iii

1011

ll011

lO1011

2

3

i 5
6

i

ll

lll

llO1

llOll

llO101

01

001

0101

00101

010101

The BRM counter value and initial value for these Hmi n

values are the 2's complement of the above numbers. These values

are tabulated in Table 2.7.


